Intel® C++ Compiler for Linux* Systems
User's Guide

Document Number: 253254-018

Disclaimer and Legal Information

Information in this document is provided in connection with Intel products. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.
Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or
use of Intel products including liability or warranties relating to fitness for a particular purpose,
merchantability, or infringement of any patent, copyright or other intellectual property right. Intel
products are not intended for use in medical, life saving, or life sustaining applications.

This User’s Guide as well as the software described in it is furnished under license and may only
be used or copied in accordance with the terms of the license. The information in this manual is
furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or
liability for any errors or inaccuracies that may appear in this document or any software that may
be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The software described in this User’s Guide may contain software defects which may cause the
product to deviate from published specifications. Current characterized software defects are
available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, 1386, 1486, iCOMP, Intel, Intel logo,
Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel
NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium,
Pentium II Xeon, Pentium III Xeon, Pentium M, and VTune are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 1996 - 2004.

Table Of Contents

Welcometo the INtel® C++ CoMpPIler ..o, 1
What's NeW in ThiS REIEASEuuiiiiiiiii e e e 1
FEatures and BENEFILS it e e e e e e e e e e e 2
Product Web Site and SUPPOITceeiiiiieieei ettt e et e e e e e e s e anb e e e e aaaaeaans 2
SYSIEM REQUINEMIENTS ...ttt e ettt e e e e e s e bbb et e e e e e e e s bbbbe e e e e e e e e aannnbeaaens 3
FLEXIM* EIECIrONIC LICENSING ... uetiieiiieeie ittt ettt e e e e e s et e e e e e e e e s nnnbeeeaaaeeeanns 3
Related PUDIICALIONS ...ttt e e e e e e s e bbb et e e e e e e s nnbbeeeaaaeeeaans 3
HOW to Use ThiS DOCUMENTccoeiiiiiiiieeeeeeeeeeeeeeeee, 4

Compiler Options QUICK REFEreNCE........ccevviiiieee e 7
[N TS A @) 4o o PSSR PSSR 7
Options QUICK REfErENCE GUIEuviiiiieee e e e e e e s e e e e e s e e nnnreeeees 11
Compiler OptionNs CroSS REFEIENCEiviiei it e e e e e e e 31
Default CoOmMPIlEr OPLIONSiiiiii e e e e s s e e e e e e s s s et e eeeaeeesennsnrneeeeenans 37

Building and Debugging AppliCatioNS...........cceveereereeneeniesee e 39
LCT= 11 0o TS r= L (=T o S 39
Building Applications from the Command LiNE..........ccccuuiiiiieei i 40
(0] 131 o]1F= 10 4 K o110 o IS R 43
[T 0124 Vo PP PRPRRUPPPPPRTP 57
[D7=] o 18 {e o |1 s To [P PPTP PR 58

USING LIDFAIrTES...c.eee ettt 60
(D12 = LU I o = U= PP PRPTTVPURRTP 60
INEI® Shared LIDIAriesSoooeiiieieeeee ettt e e e e e e e e e e saneeee 62
Y E=Tat= VoL g o I o] = 14 =T T PP UPPTPOPRUPRTP 62
Compiling for NoN-shared LIDFaries ...t 63

geCr ComMPALIDHILYeeeeeeieeie e 67
(o [olosal [a1 1=] fo] 1T =1 o1 11 AR P TP PRTTR T 71
o [oToll 210 1) ot T o3 1 o] o 1= S 74
(o [oToll WY g Tt a0 I AN 11] 11 (= S 75

Language CONfOIrMANCE..........cccuviiieree e e eie ettt s ee s 76
(7] a1 {0 g F-TaTot I @) (o] o 1R 76
Conformance t0 the C STANUArdc..eeiiiiiiie i 76
Conformance to the C++ Standard............oocuiiiiiiiiii e 78

Compiler OPtIMIZAtIONS.......cccuiiiiiie e 79
OPLIMIZALION LEVEIS. ... ittt sttt e e s st e e s snb e e s nnbneeesnnneeas 79
Floating-point OPLIMIZALIONSceiiiiiiiee ittt e et bt e e nbb e e e s nbbe e e s abbeeeesnbaeeeans 81
Optimizing fOr SPECIfIC PrOCESSOISuviiiiiiiiie it 84
Interprocedural OPtIMIZALIONSccooiiiiiiei e e e e e e e e e e e e 91
MUIIFIIE TPO ..ttt ettt et e e e st e e e e st be e e e e st ta e e e e asbeeeeeasbeeaeatbeeeeasbeeesssbanaenas 94
Inline EXPanSion Of FUNCLIONScoiiiiiiiiiiii ettt e e e e e e e e e 97
Profile-guided OptimMIZatiONSuiiiiiiii e e e e e s e eabee e e e e e e e aaas 99
High-level Language Optimizations (HLO)uiiiiiiiiiiiiiieie ettt e e 116

Parallel Programming........ccccooeoiieinieeeeee e 118

Table Of Contents

Vectorization (IA-32 ONIY)....coo i e e e e s e e e e e e s e s e e e e e e e s e nnnnrereeeeeeeaan 119
AULO ParalleliZAtiONoooiiiiiiciei e 132
Parallelization With OPENMP e s e e e e e s s nanrarraeaeeean 136
Intel EXtENSIONS 10 OPENMPt e e e et e e e e e e s e bbb e e eeaaeeeaaas 148
Optimization SUPPOrt FEALUIES.........cooeriireree e 154
(070] 10 o 1 T=T D1 C=Tod 11V TP PUTT R 154
Optimizer REPOI GENEIALION ...ttt e e e ettt e e e e e e e sbbb e e e e e e e e e snnaeeees 159
BTl aTo I o Ul Y o] o] ox= 11 o] o PP PRRP TR 160
(00000 | = 0 I 0 1 SRS 162
KEY FIIES . et e e 163
Key Files Summary for IA-32 COMPIIEEuiiiiiiiee e 163
Key Files Summary for [tanium® COMPIIET..........oooiiiiiiiiiie e 166
DiagnostiCs and MESSAgES.........coviireeriirierie e 168
DIAgNOSHIC IMESSAGES ... ettteeteeee e e ittt et e e e e ettt e e e e e e s e ata b b e et e e e e e e s e aabbbeeeeaaeeeaabbbbeeeaaaeeeaannnaeeeens 168
LaNQUAQJE DIAGNOSLICSvueiiiiieaiiiiiiieite e e ettt e e ettt e e e e e e e bbb e e e e e e e e e anbbbbeeeaaaeeeannnnsneeeens 168
Suppressing Warning Messages with lint COMMENtS ... 169
Suppressing Warning Messages or Enabling Remarks ... 169
Limiting the Number of Errors REPOMEdovviiiiiiiiiiiiiee e ee e 170
=T = 1 Y (=TT oY= Vo = 170
INtel Math LIDFarycoceoieeiiececeeeeee s 171
Using the Intel Math LIBIraryccuevieiiii e e e e ee s 172
MAEN FUNCHIONS ...ttt n et s e s e nre e 176
INtel® C++ INtrinsicS Reference..........ccoveveii i 199
10T [8Tod o o R ORI 199
Intrinsics Implementation ACrOSS All LA i e e e e 204
MMX™ Technology INTrINSICS ...uvevieeiiie e s e e s e r e e e e e e s ernraneeeeeeean 210
Streaming SIMD EXIENSIONScoceiiiiiiiiiiiiie ettt e ettt e e e e ettt e e e e e e s anbee e e e e e e e e e annbaeeeeas 221
Streaming SIMD EXIENSIONS 2coiiuuiiiiiiiiaae ettt ettt e e e et e e e e e e st b b e e e e e e e s s aanreeeeeas 249
NEW TA-32 INLINSICS ...ttt e ettt e e e e e e e bbb et e e e e e e e e s bbb beee e e e e e e s anannbeeaens 283
Intrinsics for HaNiUM® INSTTUCHONSoiiiiiiiie e e e 285
Data Alignment, Memory Allocation Intrinsics, and Inline Assembly ..o, 307
Intrinsics Cross-processor IMpPlemMENtatioN..........ooiuiiiiiiiiai e 311
INtel® C++ Class Libraries.......coeeiein e 332
Introduction to the Class LIDIariesoooiiiiiiiii e 332
T =To L= Yo (o] O F= T T RSP 339
Floating-point VECIOr ClaSSESuuuiiiiiie it e e s e ee e e e e e e s eanranereeeeean 363
ClasSeS QUICK RETEIENCEuvviviiieieiiiiieeeieeeeeeeeeeeeeaeeeeeaeteeaeasesasssesssssesssssesssssssssssssersrersrsrererares 381
Programming EXAMPIEcceeei ittt e e e e 389
70 L= TR 391

i

WElcome to the Intel® C++ Compiler

Welcome to the Intel® C++ Compiler. Before you use the compiler, see System Requirements.

Most Linux* distributions include the GNU* C library, assembler, linker, and others. The Intel
C++ Compiler includes the Dinkumware* C++ library. See Libraries Overview.

Please look at the individual sections within each main section of this User's Guide to gain an
overview of the topics presented. For the latest information, visit the Intel Web site:
http://developer.intel.com/.

What's New in This Release

New features for this version of the Intel® C++ Compiler include:
* New gcc Interoperability Options
* Improved gec Compatibility
* Support for Precompiled Header Files
* New gcc Built-in Functions
* New gcc Function Attributes

* New optimization support for the Intel® Pentium® 4 processor with Streaming SIMD
Extensions 3 (SSE3)

* New Processor-specific Run Time Checks for IA-32

e New [A-32 Intrinsics for the Intel Pentium 4 processor with Streaming SIMD Extensions 3
(SSE3)

e New Synchronization Primitive intrinsics for Itanium®-based systems
e New Code-Coverage and Test Prioritization Tools

e New Symbol Visibility Options

e New debug support for IPO

» Updates to Intel Math Library

e Other New Compiler Options

e New functionality for Invoking the Compiler from the Command Line

For further information on New Features, see the Release Notes.

Intel® C++ Compiler for Linux* Systems User's Guide

Features and Benefits

The Intel® C++ Compiler allows your software to perform best on computers based on the Intel
architecture. Using new compiler optimizations, such as profile-guided optimization, prefetch
instruction and support for Streaming SIMD Extensions (SSE) and Streaming SIMD Extensions 2
(SSE2), the Intel C++ Compiler provides high performance.

Feature Benefit

High Performance Achieve a significant performance gain by using optimizations

Support for Streaming | Advantage of Intel microarchitecture
SIMD Extensions

Automatic vectorizer | Advantage of SIMD parallelism in your code achieved automatically

OpenMP* Support Shared memory parallel programming

Floating-point Improved floating-point performance

optimizations

Data prefetching Improved performance due to the accelerated data delivery
Interprocedural Larger application modules perform better

optimizations

Profile-guided Improved performance based on profiling frequently-used functions
optimization

Processor dispatch Taking advantage of the latest Intel architecture features while

maintaining object code compatibility with previous generations of
Intel® Pentium® processors (for IA-32-based systems only).

Product Web Site and Support

For the latest information about Intel® C++ Compiler, visit
http://developer.intel.com/software/products/

For specific details on the Itanium® architecture, visit the web site at
http://developer.intel.com/design/itanium/under Inx.htm.

Welcome to the Intel® C++ Compiler

System Requirements
IA-32 Processor System Requirements

e A computer based on a Pentium® processor or subsequent IA-32 based processor (Pentium
4 processor recommended).

* 128 MB of RAM (256 MB recommended).
* 100 MB of disk space.

[tanium® Processor System Requirements
e A computer with an Itanium processor.
* 256 MB of RAM.
* 100 MB of disk space.

Software Requirements

See the Release Notes for a complete list of system requirements.

FLEXIm* Electronic Licensing

The Intel® C++ Compiler uses Macrovision's FLEXIm* licensing technology. The compiler
requires a valid license file in the / | i censes directory in the installation path. The default
directory is/ opt /i ntel _cc_80/|i censes. The license files have a. | i ¢ file extension.

If you require a counted license, see Using the Intel® License Manager for FLEXIm*
(fI ex_ug. pdf).

Related Publications

The following documents provide additional information relevant to the Intel® C++ Compiler:
e ISO/IEC 9989:1990, Programming Languages--C
e ISO/IEC 14882:1998, Programming Languages--C++.

» The Annotated C++ Reference Manual, Special Edition, Ellis, Margaret; Stroustrup, Bjarne,
Addison Wesley, 1991. Provides information on the C++ programming language.

* TheC++ Programming Language, 3rd edition, 1997: Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA 01867.

* The C Programming Language, 2nd edition, Kernighan, Brian W.; Ritchie, Dennis W.,
Prentice Hall, 1988. Provides information on the K & R definition of the C language.

e C: AReference Manual, 3rd edition, Harbison, Samual P.; Steele, Guy L., Prentice Hall,
1991. Provides information on the ANSI standard and extensions of the C language.

» Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture, Intel
Corporation, doc. number 243190.

* Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference
Manual, Intel Corporation, doc. number 243191.

* Intel Architecture Software Developer's Manual, Volume 3: System Programming, Intel
Corporation, doc. number 243192.

e Intel® Itanium® Assembler User's Guide.
e Intel® Itanium®-based Assembly Language Reference Manual.

Intel® C++ Compiler for Linux* Systems User's Guide

e [tanium® Architecture Software Developer's Manual Vol. 1: Application Architecture, Intel
Corporation, doc. number 245317-001.

e [tanium® Architecture Software Developer's Manual Vol. 2: System Architecture, Intel
Corporation, doc. number 245318-001.

* Itanium® Architecture Software Developer's Manual Vol. 3: Instruction Set Reference, Intel
Corporation, doc. number 245319-001.

* [tanium® Architecture Software Developer's Manual Vol. 4: Itanium® Processor
Programmer's Guide, Intel Corporation, doc. number 245319-001.

* Intel Architecture Optimization Manual, Intel Corporation, doc. number 245127.

e Intel Processor Identification with the CPUID Instruction, Intel Corporation, doc. number
241618.

* Intel Architecture MMX™ Technology Programmer's Reference Manual, Intel Corporation,
doc. number 241618.

e Pentium® Pro Processor Developer's Manual (3-volume Set), Intel Corporation, doc.
number 242693.

* Pentium® II Processor Developer's Manual, Intel Corporation, doc. number 243502-001.
* Pentium® Processor Specification Update, Intel Corporation, doc. number 242480.

* Pentium® Processor Family Developer's Manual, Intel Corporation, doc. numbers 241428-
005.

Most Intel documents are also available from the Intel Corporation Web site at
http://www.intel.com.

How to Use This Document

This User's Guide explains how you can use the Intel® C++ Compiler. It provides information on
how to get started with the Intel C++ Compiler, how this compiler operates and what capabilities it
offers for high performance. You learn how to use the standard and advanced compiler
optimizations to gain maximum performance for your application.

This documentation assumes that you are familiar with the C and C++ programming languages
and with the Intel processor architecture. You should also be familiar with the host computer's
operating system.

f) Note

This document explains how information and instructions apply differently to each targeted
architecture. If there is no specific indication to either architecture, the description is applicable to
both architectures.

Welcome to the Intel® C++ Compiler

Conventions

This documentation uses the following conventions:

This type Indicates an element of syntax, reserved word, keyword, filename,
style computer output, or part of a program example. The text appears in
lowercase unless uppercase is significant.

This type Indicates the exact characters you type as input.
style
This type Indicates a placeholder for an identifier, an expression, a string, a
style symbol, or a value. Substitute one of these items for the placeholder.
[items] Indicates that the items enclosed in brackets are optional.
{ itentl | Used for option's version; for example, option - X{ K| W B| N| P} has
iten2 |... } these versions: - XK, - XW - XB, - xNand - xP.

(el l'i pses) |Indicate that you can repeat the preceding item.

Naming Syntax for the Intrinsics

Most intrinsic names use a notational convention as follows:

_mm<intrin_op> <suffix>

<i ntrin_op> | Indicates the intrinsics basic operation; for example, add for addition and
sub for subtraction.

<suf fi x> Denotes the type of data operated on by the instruction. The first one or two
letters of each suffix denotes whether the data is packed (p), extended
packed (ep), or scalar (S). The remaining letters denote the type:

__ul6 unsigned 16-bit integer
__i 8 signed 8-bit integer

__u8 unsigned 8-bit integer

__S single-precision floating point
__d double-precision floating point
__ 1128 signed 128-bit integer

__ i 64 signed 64-bit integer
___U64 unsigned 64-bit integer

__1 32 signed 32-bit integer
__Uu32 unsigned 32-bit integer

__ 116 signed 16-bit integer

A number appended to a variable name indicates the element of a packed object. For example, r0
is the lowest word of r. Some intrinsics are "composites" because they require more than one
instruction to implement them.

Intel® C++ Compiler for Linux* Systems User's Guide

The packed values are represented in right-to-left order, with the lowest value being used for
scalar operations. Consider the following example operation:

double a[2] = {1.0, 2.0}; _ nl28dt = mmload _pd(a);
The result is the same as either of the following:

_ nml28d t = _mmset _pd(2.0, 1.0); _ nl28d t = _nmsetr_pd(1l.0,
2.0);

In other words, the xnmregister that holds the value t will look as follows:

127 i
[0 JT10]

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics require their
arguments to be i mmedi at es (constant integer literals).

See Also Naming Syntax and Usage for intrinsics.

Naming Syntax for the Class Libraries

The name of each class denotes the data type, signedness, bit size, number of elements using the
following generic format:

<t ype><si gnedness><bi t s>vec<el enent s>

{F] 1'}{s] u} {64] 32] 16| 8} vec { 8] 4] 2] 1}
where
<type> Indicates floating point (F) or integer (|)

<si gnedness> | Indicates signed (S) or unsigned (U). For the | vec class, leaving this
field blank indicates an intermediate class. There are no unsigned Fvec
classes, therefore for the Fvec classes, this field is blank.

<bi ts> Specifies the number of bits per element

<el enent s> Specifies the number of elements

Compiler Options Quick Reference

Conventions Used in the Options Quick Guide Tables

New

Convention

Definition

[-]

If an option includes "[-] " as part of the definition, then the option
can be used to enable or disable the feature. For example, the -

€c99[-] option can be used as - c99 (enable c99 support) or - 99-
(disable c99 support).

[n]

Indicates that the value n in[] can be omitted or have various values.

Values in {} with
vertical bars

Used for option's version; for example, option - X{ K| W N| B| P} has
these versions: - XK, - XW - XN, - XB, and - xP.

{n}

Indicates that option must include one of the fixed values for n.

Words int hi s
st yl e following an
option

Indicate option's required argument(s). Arguments are separated by
comma if more than one are required.

Options

* Options specific to IA-32 architecture

* Options specific to the Itanium® architecture (Itanium-based systems only)

e Options supported on both IA-32 and Itanium-based systems.

Option

Description Default

-alias_args[-]

This option implies arguments -alias_args
may be aliased [not aliased].

-auto il p32
Itanium-based
systems only

Specifies that the application OFF
cannot exceed a 32-bit address
space, which allows the compiler
to use 32-bit pointers whenever
possible. To use this option, you
must also specify - i po. Using the
-aut o_i | p32 option on
programs that can exceed 32-bit
address space (2**32) may cause
unpredictable results during
program execution.

- axB
IA-32 only

Generates specialized code for OFF
Intel® Pentium® M and
compatible Intel processors.

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

-axN
IA-32 only

Generates specialized code for
Intel Pentium 4 and compatible
Intel processors.

OFF

- axP
[A-32 only

Generates specialized code for the
Intel Pentium 4 processor with
Streaming SIMD Extensions 3
(SSE3).

OFF

-conplex_limted range[-]

Enables the use of "delete basic
algebraic expansions" of some
arithmetic operations involving
data of type _Conpl ex. This can
cause some performance
improvements in programs that
use _Conpl ex arithmetic, but
values at the extremes of the
exponent range may not compute
correctly. Default is -
complex_limted range-.

OFF

-create_pch fil enane

Manual creation of precompiled
header (fi | enane. pchi).

OFF

-cxxlib-gcc

Link using C++ run-time libraries
provided with gcc (requires gec
3.2 or above).

OFF

-cxxlib-icc

Link using C++ run-time libraries
provided by Intel.

ON

-fast

Maximize speed across the entire
program. Turns on - O3, - i po,
and - stati c.

OFF

-fm nshar ed

Compilation is for the main
executable. Absolute addressing
can be used and non-position
independent code generated for
symbols that are at least protected.

OFF

-f no- common

Enables the compiler to treat
common variables as if they were
defined, allowing the use of

gpr el addressing of common
data variables.

OFF

- f pst kchk
IA-32 only

Generates extra code after every
function call to assure the FP stack
is in the expected state.

OFF

Compiler Options Quick Reference

Option

Description

Default

-fvisibility=
[extern|defaul t|protected
| hi dden|i nternal]

Global symbols (common and
defined data and functions) will
get the visibility attribute given by
default. Symbol visibility
attributes explicitly set in the
source code or using the symbol
visibility attribute file options will
override the-fvi sibility

setting.

OFF

-fvisibility-extern=file

Space separated symbols listed in
the fi | e argument will get
visibility set to ext er n.

OFF

-fvisibility-default=file

Space separated symbols listed in
the fi | e argument will get
visibility set to def aul t .

OFF

-fvisibility-
protected=file

Space separated symbols listed in
the fi | e argument will get
visibility set to pr ot ect ed.

OFF

-fvisibility-hidden=file

Space separated symbols listed in
the fi | e argument will get
visibility set to hi dden.

OFF

-fvisibility-internal =file

Space separated symbols listed in
the fi | e argument will get
visibility set to i nt er nal

OFF

-fwritable-strings

Ensure that string literals are
placed in a writable data section.

OFF

- gcc- nane=nane

Use this option to specify the
location of g++ when compiler
cannot locate gcc C++ libraries.
For use with - cxxl| i b- gcc
configuration. Use this option
when referencing a non-standard

gcc installation.

OFF

- gcc-versi on=nnn

This option provides compatible ON
behavior with gcc, where nnn
indicates the gcc version. This
version of the Intel compiler
supports - gcc- ver si on=320

(Default).

Intel® C++ Compiler for Linux* Systems User's Guide

form of the diagnostic output is
used. When enabled, the original
source line is not displayed and the
error message text is not wrapped
when too long to fit on a single
line.

Option Description Default

-isystendir Add directory di r to the start of | OFF
the system include path.

- no-gcc Do not predefine the __ GNUC__, | OFF
__GNUC_M NOR__, and
__GNUC_PATCHLEVEL_
macros.

-nost di nc Same as - X. OFF

- pch Automatic processing for OFF
precompiled headers.

-pch_dir dirnane Directs the compiler to find and/or | OFF
create a file for pre-compiled
headers in di r name.

-prefetch[-] Enables [disables] the insertion of | ON
software prefetching by the
compiler. Default is - pr ef et ch.

- prof _format _32 By default, the Intel compiler OFF
creates 64-bit profiling counters
(. dyn and . dpi). This option
creates 32-bit counters for
compatibility with the Intel C++
Compiler 7.0.

-shared-1ibcxa Link Intel | i bcxa C++ library ON
dynamically.

-static-1ibcxa Link Intel | i bcxa C++ library OFF
statically.

-strict_ansi Strict ANSI conformance dialect. | OFF

-T file Direct linker to read link OFF
commands from file.

-use_pch fil enane Manual use of precompiled header | OFF
(fil ename. pchi).

-\Wbri ef Enable a mode in which a shorter | OFF

10

Compiler Options Quick Reference

Option Description Default
-Wheck Performs compile-time code OFF
checking for code that exhibits
non-portable behavior, represents
a possible unintended code
sequence, or possibly affects
operation of the program because
of a quiet change in the ANSI C
Standard.
- W64 Print diagnostics for 64-bit
Itanium-based porting.
systems only
- xB Generates specialized code for OFF
IA-32 only Intel Pentium M and compatible
Intel processors.
- xN Generates specialized code for OFF
IA-32 only Intel Pentium 4 and compatible
Intel processors.
- xXP Generates specialized code for the | OFF
[A-32 only Intel Pentium 4 processor with
Streaming SIMD Extensions 3
(SSE3).

Options Quick Reference Guide

This topic provides a reference to all the compiler options and some linker control options.

» Options specific to IA-32 architecture

* Options specific to the Itanium® architecture

* Options supported on both IA-32 and Itanium-based systems.

Option Description Default
- A- Disables all predefined macros. | OFF
-[nojalign Analyze and reorder memory OFF
[A-32 only layout for variables and arrays.
-[no]restrict Enables/disables pointer OFF
disambiguation with the
restrict qualifier.
- Anane[(val ue)] Associates a symbol name with | OFF

the specified sequence of
val ue. Equivalent to an
#assert preprocessing
directive.

11

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

-alias_args[-]

This option implies arguments
may be aliased [not aliased].

-alias_args

- ansi

Equivalent to GNU* ANSI.

OFF

-ansi _alias[-]

-ansi _al i as directs the
compiler to assume the
following:

e Arrays are not accessed
out of bounds.

* Pointers are not cast to
non-pointer types, and
vice-versa.

¢ References to objects of
two different scalar types
cannot alias. For example,
an object of type i nt
cannot alias with an object
of type f | oat , or an
object of type f | oat
cannot alias with an object
of type doubl e.

If your program satisfies the
above conditions, setting the -
ansi _al i as flag will help the
compiler better optimize the
program. However, if your
program does not satisfy one of
the above conditions, the -

ansi _al i as flag may lead the
compiler to generate incorrect
code.

OFF

-auto il p32
Itanium-based
systems only

Specifies that the application
cannot exceed a 32-bit address
space, which allows the
compiler to use 32-bit pointers
whenever possible. To use this
option, you must also specify -
i po. Using the-auto_i | p32
option on programs that can
exceed 32-bit address space
(2**32) may cause
unpredictable results during
program execution.

OFF

12

Compiler Options Quick Reference

Option Description Default
-ax{ Kl W N B| P} Generates specialized code for OFF
IA-32 only processor-specific codes K, W N,

B, and P while also generating
generic [A-32 code.
¢ K= Intel® Pentium® III
and compatible Intel
processors

e W= Intel Pentium 4 and
compatible Intel
processors

¢ N=Intel Pentium 4 and
compatible Intel
processors

¢ B=Intel Pentium M and
compatible Intel
processors

e P=Intel Pentium 4
processor with Streaming
SIMD Extensions 3
(SSE3)

-C Places comments in OFF
preprocessed source output.

-C Stops the compilation process OFF
after an object file has been
generated. The compiler
generates an object file for each
C or C++ source file or
preprocessed source file. Also
takes an assembler file and
invokes the assembler to
generate an object file.

-c99[-] Enables [disables] C99 support | ON
for C programs.

-conplex_limted_range[-] Enables the use of "delete basic | OFF
algebraic expansions" of some
arithmetic operations involving
data of type _Conpl ex. This
can cause some performance
improvements in programs that
use _Conpl ex arithmetic, but
values at the extremes of the
exponent range may not
compute correctly. Default is -
complex_linmted_range-

13

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

-create_pch fil ename

Manual creation of precompiled
header (fi | enane. pchi).

OFF

-cxxlib-gcc

Link using C++ run-time
libraries provided with gcc
(requires gcc 3.2 or above)

OFF

-cxxlib-icc

Link using C++ run-time
libraries provided by Intel.

ON

-dM

Output macro definitions in
effect after preprocessing (use
with - E).

OFF

- Dnane[=val ue]

Defines a macro nanme and
associates it with the specified
val ue. Equivalent to a

#def i ne preprocessor
directive.

OFF

-dryrun

Show driver tool commands, but
do not execute tools.

OFF

-dynam c-l i nkerfil enane

Selects a dynamic linker
(f i | enane) other than the
default.

OFF

Stops the compilation process
after the C or C++ source files
have been preprocessed, and
writes the results to stdout.

OFF

-EP

Preprocess to stdout omitting
#l i ne directives.

OFF

-f[no] ver bose-asm

Produce assemblable file with
compiler comments.

ON

-falias

Assume aliasing in program.

ON

-f ast

Maximize speed across the
entire program. Turns on - O3, -
i po,and-static.

OFF

-fcode-asm

Produce assemblable file with
optional code annotations.
Requires -S.

OFF

-ffnalias

Assume aliasing within
functions

ON

14

Compiler Options Quick Reference

Option Description Default
-fm nshar ed Compilation is for the main OFF
executable. Absolute addressing
can be used and non-position
independent code generated for
symbols that are at least
protected.
-fno-alias Assume no aliasing in program. | OFF
-fno- common Enables the compiler to treat OFF
common variables as if they
were defined, allowing the use
of gpr el addressing of
common data variables.
-fno-fnalias Assume no aliasing within OFF
functions, but assume aliasing
across calls.
-fno-rtti Disable RTTI support. OFF
- f nspl it[-] Enables [disables] function OFF
Itanium-based splitting. Default is ON with -
systems only pr of _use. To disable function
splitting when you use -
pr of _use, also specify -
fnsplit-.
-fp Disable using the EBP register OFF
[A-32 only as general purpose register.
-fpic, -fPIC For TA-32, this option generates | OFF
position independent code.
For Itanium-based systems, this
option generates code allowing
full symbol preemption.
-fp_port Round fp results at assignments | OFF
IA-32 only and casts. Some speed impact.
- f pst kchk Generates extra code after every | OFF
IA-32 only function call to assure the FP
stack is in the expected state.
-fr32 Use only lower 32 floating-point | OFF
Itanium-based registers.
systems only
-fshort-enuns Allocate as many bytes as OFF
needed for enumerated types.
-fsource-asm Produce assemblable file with OFF
optional code annotations.
Requires - S.
-fsyntax-only Same as - synt ax. OFF

15

Intel® C++ Compiler for Linux* Systems User's Guide

information in the object code
for use by source-level
debuggers. The - g option
changes the default optimization
from - Q2 to - Q0.

Option Description Default
-ftzf-] Flushes denormal results to zero. | OFF
Itanium-based The option is turned ON with -
systems only CB.
-funsigned-bitfields Change default bitfield type to | OFF
unsi gned.
- f unsi gned- char Change default char type to OFF
unsi gned.
-fvisibility-default=file Space separated symbols listed | OFF
inthefil e argument will get
visibility set to def aul t .
-fvisibility-extern=file Space separated symbols listed | OFF
inthefil e argument will get
visibility set to ext er n.
-fvisibility-hidden=file Space separated symbols listed | OFF
inthefil e argument will get
visibility set to hi dden.
-fvisibility-internal =file Space separated symbols listed | OFF
inthefil e argument will get
visibility set to i nt er nal .
-fvisibility-protected=file | Spaceseparated symbols listed | OFF
inthefil e argument will get
visibility set to pr ot ect ed.
-fvisibility= Global symbols (common and OFF
[ext ern| defaul t| protected defined data and functions) will
| hi dden| i nternal] get the visibility attribute given
by default. Symbol visibility
attributes explicitly set in the
source code or using the symbol
visibility attribute file options
will override the -
fvisibility setting.
-fwitabl e-strings Ensure that string literals are OFF
placed in a writable data section.
-9 Generates symbolic debugging | OFF

16

Compiler Options Quick Reference

Option

Description

Default

- gcc- nane=nane

Use this option to specify the
location of g++ when compiler
cannot locate gcc C++ libraries.
For use with - cxxl| i b- gcc
configuration. Use this option
when referencing a non-standard
gcc installation.

OFF

- gcc-versi on=nnn

This option provides compatible
behavior with gcc, where nnn
indicates the gcc version. This
version of the Intel compiler
supports - gcc-

ver si on=320 (Default).

ON

-H

Print "include" file order and
continue compilation.

OFF

-hel p

Prints compiler options
summary.

OFF

-idirafterdir

Add directory (di r) to the
second include file search path
(after - 1).

OFF

-ldirectory

Specifies an additional
di rectory to search for
include files.

OFF

-i _dynam c

Link Intel provided libraries
dynamically.

OFF

-inline_debug info

Preserve the source position of
inlined code instead of assigning
the call-site source position to
inlined code.

OFF

Enables interprocedural
optimizations for single file
compilation.

OFF

-1 PF_fmaf -]
Itanium-based
systems only

Enable [disable] the combining
of floating-point multiplies and
add/subtract operations.

OFF

-1 PF fltacc]-]
Itanium-based
systems only

Enable [disable] optimizations
that affect floating-point
accuracy.

OFF

-1PF flt eval nethodO
Itanium-based
systems only

Floating-point operands
evaluated to the precision
indicated by the program.

OFF

17

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

-1 PF fp rel axed
Itanium-based
systems only

Provides significant
performance benefit, but slightly
less precision, when calculating
floating-point divides,
reciprocals, square roots, and
reciprocal square roots. The
results have an error of no more
than 1 ulp (unit-in-the-last-
place) when rounding to nearest
mode is used (but most often
less than 0.5 ulp), and no more
than 1.5 ulp when other
rounding modes are used.

OFF

Itanium-based
systems only

-1 PF_fp_specul ati onnpde

Enable floating-point
speculations with the following
node conditions:
o fast -speculate floating-
point operations

* saf e - speculate only
when safe

e strict -same as off

e of f - disables speculation
of floating-point
operations

OFF

-ip_no_inlining

Disables inlining that would
result from the - i p
interprocedural optimization, but
has no effect on other
interprocedural optimizations.

OFF

-ip no pinlining
IA-32 only

Disable partial inlining.
Requires - i p or - i po.

OFF

-i po

Enables interprocedural
optimizations across files.

OFF

-ipo_c

Generates a multifile object file
(i po_out . 0) that can be used
in further link steps.

OFF

-i po_obj

Forces the compiler to create
real object files when used with
-i po.

OFF

-ipo_S

Generates a multifile
assemblable file named

i po_out . s that can be used in
further link steps.

OFF

18

Compiler Options Quick Reference

Option Description Default
-isystendir Add directory di r to the start | OFF

of the system include path.
-1 v.depipar all el This option indicates there is OFF
Itanium-based absolutely no loop-carried
systems only memory dependency in the loop

where IVDEP directive is

specified.
- Kc++ Compile all source or ON

unrecognized file types as C++
source files.

- Knopi ¢, - KNOPI C
Itanium-based
systems only

Deprecated. Use f pi ¢ instead
of this option.

ON for Itanium-

based systems
OFF for [A-32

-KPIC, -Kpic Deprecated. Use f pi ¢ instead | OFF
of this option.
-Ldirectory Instruct linker to search OFF
di rect ory for libraries.
-1 ong doubl e Changes the default size of the OFF
[A-32 only long double data type from 64 to
80 bits.
-M Generates makefile dependency | OFF
lines for each source file, based
on the #i ncl ude lines found
in the source file.
- mar ch=cpu Generate code excusively fora | OFF
IA-32 only given cpu. Values for cpu are:

e penti unpro - Intel
Pentium Pro processors

e pentiunmi -Intel
Pentium II processors.

e pentiumii -Intel
Pentium III processors.

e pentiumd - Intel
Pentium 4 processors.

19

Intel® C++ Compiler for Linux* Systems User's Guide

Option Description Default
- nCpu=cpu Optimize for a specific cpu. For | ON
IA-32, cpu values are: pentium
« pentium- Optimize for | onIA-32
Pentium processor. . .
_ i taniun
* pentiunpro - Optimize | on Itanium-based
for Pentium Pro, Pentium | Systems
IT and Pentium III
processors.
e pentiumt - Optimize
for Pentium 4 processor
(Default).
For Itanium-based Systems,
cpu values are:
* i tani um- Optimize for
Itanium processor.
e itani un® - Optimize
for Itanium 2 processor
(Default).
-MD Preprocess and compile. OFF
Generate output file (. d
extension) containing
dependency information.
-Mfile Generate makefile dependency | OFF
information in f i | €. Must
specify - Mor - MM
- MG Similar to - M but treats missing | OFF
header files as generated files.
-W Similar to - M but does not OFF
include system header files.
- MMVD Similar to - VD, but does not OFF
include system header files.
- Favors conformance to the OFF
ANSI C and IEEE 754 standards
for floating-point arithmetic.
-nmpl Improve floating-point precision | OFF
(speed impact is less than - np).
-nr el ax Pass - r el ax to the linker. ON
Itanium-based
systems only
- mo-r el ax Do not pass - r el ax to the OFF
Itanium-based linker.
systems only

20

Compiler Options Quick Reference

Option Description Default
-nmserialize-volatile Impose strict memory access OFF
Itanium-based ordering for volatile data object
systems only references.
-mo-serialize-volatile The compiler may suppress both | OFF
Itanium-based run-time and compile-time

systems only memory access ordering for
volatile data object references.
Specifically, the . rel / . acq
completers will not be issued on
referencing loads and stores.

- WX Generate dependency file OFF
(. 0. dep extension) containing
information used for the Intel
wb tool.

-nobss_init Places variables that are OFF
initialized with zeroes in the
DATA section. Disables
placement of zero-initialized
variables in BSS (use DATA).

-no_cpprt Do not link in C++ run-time OFF
libraries.

-nodefaul tlibs Do not use standard libraries
when linking.

- no-gcc Do not predefine the OFF
__G\NUC__,

__GNUC_M NOR__, and
__ _GNUC_PATCHLEVEL__
macros.

-nolib_inline Disables inline expansion of OFF
standard library functions.

-nostartfiles Do not use standard startup files | OFF
when linking.

-nost di nc Same as - X. OFF

-nostdlib Do not use standard libraries and | OFF
startup files when linking.

-0 Same as - Ol on [A-32. Same as | OFF
- @2 on Itanium-based systems.

-0 Disables optimizations. OFF

-1 Enable optimizations. Optimizes | ON

for speed. For Itanium compiler,
- OL turns off software
pipelining to reduce code size.

21

Intel® C++ Compiler for Linux* Systems User's Guide

Option Description Default

-2 Same as - Ol on IA-32. Same as | OFF
- Oon Itanium-based systems.

-8 Enable - Q2 plus more OFF
aggressive optimizations that
may increase the compilation
time. Impact on performance is
application dependent, some
applications may not see a
performance improvement.

- Cbn Controls the compiler's inline ON
expansion. The amount of inline
expansion performed varies with
the value of n as follows:

¢ 0: Disables inlining.

e 1: Enables (default)
inlining of functions
declared with the
__inlinekeyword.
Also enables inlining
according to the C++
language.

e 2: Enables inlining of any
function. However, the
compiler decides which
functions to inline.
Enables interprocedural
optimizations and has the
same effect as - i p.

-ofile Name output fi | e. OFF
-opennp Enables the parallelizer to OFF
generate multi-threaded code
based on the OpenMP*

directives. The - opennp option
works with both - Q0 and any
optimization level of - O1, - O2,
and - GB.

-opennp_report{0]| 1] 2} Controls the OpenMP ON

parallelizer's diagnostic levels. -
opennp_reportl

- opennp_st ubs Enables OpenMP programs to OFF
compile in sequential mode. The
OpenMP directives are ignored
and a stub OpenMP library is
linked sequentially.

22

Compiler Options Quick Reference

Option

Description

Default

-opt _report

Generates an optimization report
directed to stderr, unless -

opt _report_fileis
specified.

OFF

-opt _report_filefil enane

Specifies the f i | enane for the
optimization report. It is not
necessary to invoke -

opt _report when this option
is specified.

OFF

-opt _report_|evellevel

Specifies the verbosity | evel
of the output. Valid | evel
arguments:

e mn

« ned

° max

Ifal evel isnot specified,
m n is used by default.

OFF

-opt _report_phasenane

Specifies the compilation name
for which reports are generated.
The option can be used multiple
times in the same compilation to
get output from multiple phases.
Valid nane arguments:
* i po: Interprocedural
Optimizer

e hl o: High Level
Optimizer

* il o: Intermediate
Language Scalar
Optimizer

* ecg: Code Generator
e onp: OpenMP*
o al | : All phases

OFF

-opt _report_routinesubstring

Specifies a routine

subst ri ng. Reports from all
routines with names that include
subst ri ng as part of the
name are generated. By default,
reports for all routines are
generated.

OFF

-opt _report_help

Displays all possible settings for
-opt _report_phase. No
compilation is performed.

OFF

23

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

-p

Same as - gp.

OFF

-P,-F

Stops the compilation process
after C or C++ source files have
been preprocessed and writes
the results to files named
according to the compiler's
default file-naming conventions.

OFF

-parallel

Detects parallel loops capable of
being executed safely in parallel
and automatically generates
multithreaded code for these
loops.

OFF

-par_report{0] 1| 2| 3}

Controls the auto-parallelizer's
diagnostic levels 0, 1, 2, or 3 as
follows:
e -par_reportO:no
diagnostic information is
displayed.

e -par_reportl:
indicates loops
successfully auto-
parallelized (default).

e -par_report 2:loops
successfully and
unsccessfully auto-
parallelized.

e -par_report 3:same
as 2 plus additional
information about any
proven or assumed
dependences inhibiting
auto-parallelization.

OFF

24

Compiler Options Quick Reference

Option

Description

Default

- par _t hreshol d[n]

Sets a threshold for the auto-
parallelization of loops based on
the probability of profitable
execution of the loop in parallel,
n=0 to 100. This option is used
for loops whose computation
work volume cannot be
determined at compile time.

e -par_threshol dO:
loops get auto-parallelized
regardless of computation
work volume.

e -par_threshol d100:
loops get auto-parallelized
only if profitable parallel
execution is almost
certain.

OFF

-pc32
IA-32 only

Set internal FPU precision to 24-
bit significand.

OFF

- pc64
[A-32 only

Set internal FPU precision to 53-
bit significand.

OFF

- pc80
IA-32 only

Set internal FPU precision to 64-
bit significand.

ON

- pch

Automatic processing for
precompiled headers.

OFF

-pch_dir dirnane

Directs the compiler to find
and/or create a file for
precompiled headers in

di r nane.

OFF

-prec div
[A-32 only

Disables the floating point
division-to-multiplication
optimization. Improves
precision of floating-point
divides.

OFF

-prefetch[-]

Enables [disables] the insertion
of software prefetching by the
compiler. Default is -
prefetch.

ON

-prof __dir dirnane

Specify the directory
(di r nan®) to hold profile
information (*. dyn, *. dpi).

OFF

-prof _file fil enane

Specify the f i | enane for
profiling summary file.

OFF

25

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

-prof _format_32

By default, the Intel compiler
creates 64-bit profiling counters
(. dyn and . dpi). This option
creates 32-bit counters for
compatibility with the Intel C++
Compiler 7.0.

OFF

- prof _gen[x]

Instruments the program to
prepare for instrumented
execution and also creates a new
static profile information file

(. spi). With the X qualifier,
extra source position is collected
which enables code coverage
tools.

OFF

- prof _use

Uses dynamic feedback
information.

OFF

-Qnstall dir

Sets di r as root of compiler
installation.

OFF

-Q ocation,tool, path

Sets pat h as the location of the
tool specified by tool .

OFF

-Qoption,tool,list

Passes an argument | i St to
another t ool in the
compilation sequence, such as
the assembler or linker.

OFF

-gp

Compile and link for function
profiling with UNIX* pr of
t ool

OFF

-rcd
IA-32 only

Disables changing of the FPU
rounding control. Enables fast
float-to-int conversions.

OFF

-S

Generates assemblable files with
. S suffix, then stops the
compilation.

OFF

- shar ed

Produce a shared object.

OFF

-shared-|i bcxa

Link Intel | i bcxa C++ library
dynamically.

ON

-sox[-]
[A-32 only

Enables [disables] the saving of
compiler options and version
information in the executable
file.

- SOX-

-static

Prevents linking with shared
libraries.

OFF

26

Compiler Options Quick Reference

Option Description Default
-static-1ibcxa Link Intel | i bcxa C++ library | OFF
statically.
- st d=c99 Enable C99 support for C ON
programs.
-strict_ansi Strict ANSI conformance OFF
dialect.
- synt ax Checks the syntax of a program | OFF
and stops the compilation
process after the C or C++
source files and preprocessed
source files have been parsed.
Generates no code and produces
no output files. Warnings and
messages appear on stderr.
-T file Direct linker to read link OFF
commands fromfi | e.
-tppl Targets optimization for the OFF
Itanium-based Itanium processor.
systems only
-tpp2 Targets optimization for the ON
Itanium-based Itanium® 2 processor.
systems only Generated code is compatible
with the Itanium processor.
-t pps Targets the optimizations for the | OFF
[A-32 only Pentium processor.
-t pp6 Targets the optimizations for the | OFF
IA-32 only Pentium Pro, Pentium II and
Pentium III processors.
-t pp7 Targets optimizations for the ON
IA-32 only Intel Pentium 4 processors.
- Unane Suppresses any definition of a OFF
macro name. Equivalent to a
#undef preprocessing
directive.
-unrol 10 Disable loop unrolling. OFF
-unroll O Disable loop unrolling. OFF
-use_asm Produce objects through OFF
assembler.
-use_nsasm Accept the Microsoft* MASM- | OFF
[A-32 only style inlined assembly format

instead of GNU-style.

27

Intel® C++ Compiler for Linux* Systems User's Guide

Option Description Default

-use_pch fil enane Manual use of precompiled OFF
header (fi | enane. pchi).

-u synbol Pretend the synbol is OFF
undefined.

-V Display compiler version OFF
information.

-V Show driver tool commands and
execute tools.

-vec report[n] Controls the amount of ON

shorter form of the diagnostic
output is used. When enabled,
the original source line is not
displayed and the error message
text is not wrapped when too
long to fit on a single line.

IA-32 only vectorizer diagnostic -vec_reportl
information.
¢ n =0 no diagnostic
information
¢ n =1 indicates vectorized
loops (DEFAULT)
e n =2 indicates
vectorized/non-vectorized
loops
e n =3 indicates
vectorized/non-vectorized
loops and prohibiting data
dependence information
¢ n =4 indicates non-
vectorized loops
¢ n =5 indicates non-
vectorized loops and
prohibiting data
-wW Disable all warnings. OFF
-Vl | Enable all warnings. OFF
-\Wbri ef Enable a mode in which a OFF

28

Compiler Options Quick Reference

Option

Description

Default

-Wheck

Performs compile-time code
checking for code that exhibits
non-portable behavior,
represents a possible unintended
code sequence, or possibly
affects operation of the program
because of a quiet change in the
ANSI C Standard.

OFF

-wn

Control diagnostics.
e n =0 displays errors
(same as - W)

e n =1 displays warnings
and errors (DEFAULT)

e n =2 displays remarks,
warnings, and errors

ON
-wl

~wdL1[, L2, ...

Disables diagnostics L1 through
LN.

OFF

-well[, L2, ...

Changes severity of diagnostics
L1 through LN to error.

OFF

-Werror

Force warnings to be reported as
erTors.

OFF

Limits the number of errors
displayed prior to aborting
compilation to n.

ON
-wnl100

~wrL1f, L2, . ..

Changes the severity of
diagnostics L1 through LN to
remark.

OFF

~waLl[, L2, . ..

Changes severity of diagnostics
L1 through LN to warning.

OFF

-W,o0l[,02,...]

Pass options 01, 02, etc. to the
linker for processing.

OFF

- W64
Itanium-based
systems only

Print diagnostics for 64-bit
porting.

OFF

29

Intel® C++ Compiler for Linux* Systems User's Guide

Option Description Default

-xXtype All source files found OFF
subsequent to - Xt ype will be
recognized as one of the
following t ypes:

e C -Csource file

e C++ - C++ source file

e c-header - C header
file

e cpp-output -C
preprocessed file

e« assenbl er -
assemblable file

e« assenbler-wth-
cpp - Assemblable file
that needs to be
preprocessed.

e none - Disable
recognition and revert to
file extension.

-X Removes the standard OFF
directories from the list of
directories to be searched for
include files.

- x{ K| WN| B| P} Generates specialized code for | OFF

IA-32 only processor-specific codes K, W N,
B, and P.

¢ K= Intel Pentium III and
compatible Intel
processors

¢ W= Intel Pentium 4 and
compatible Intel
processors

¢ N=Intel Pentium 4 and
compatible Intel
processors

¢ B=Intel Pentium M and
compatible Intel
processors

¢ P =Intel Pentium 4
processor with Streaming
SIMD Extensions 3
(SSE3)

30

Compiler Options Quick Reference

Option

Description Default

-Xl'i nker val

Pass val directly to the linker OFF

for processing.

-Zp{ 1] 2| 4| 8] 16}

Packs structureson 1, 2,4, 8, or | ON

16 byte boundaries. -Zplé6

Compiler Options Cross Reference

Linux* Windows* Description Linux
Default

- A I QA- Remove all OFF
predefined macros.

- Anane[(val)] [QAnane[(val)] Create an assertion OFF
name having value
val .

- ansi | Za Enable/disable ON
assumption of ANSI
conformance.

31

Intel® C++ Compiler for Linux* Systems User's Guide

debug information in
object file. The - g
option changes the
default optimization
from - Q2 to - Q0.

Linux* Windows* Description Linux
Default
-ax{K| W N B| P} I Qax{ K| W N| B| P} Generates specialized | OFF
code for processor-
specific codes K, W N,
B, and P while also
generating generic
[A-32 code.
« K=Intel®
Pentium® 111
and compatible
Intel processors
e W= Intel
Pentium 4 and
compatible
Intel processors
* N=Intel
Pentium 4 and
compatible
Intel processors
» B=Intel
Pentium M and
compatible
Intel processors
e P=Intel
Pentium 4
processor with
Streaming
SIMD
Extensions 3
(SSE3)
-C /C Don't strip comments. | OFF
-C /c Compile to object OFF
(. 0) only, do not link.
- Dnane[=val ue] / Dname[=val ue] Define macro. OFF
-E /| E Preprocess to stdout. | OFF
-fp / Oy- Use EBP-based stack | OFF
frame for all
functions.
-g ! Zi Produce symbolic OFF

32

Compiler Options Quick Reference

Linux*

Windows*

Description

Linux
Default

-H

I QH

Print include file
order.

OFF

-hel p

/ hel p

Print help message
listing.

OFF

-ldirectory

/ldirectory

Add directory to
include file search
path.

OFF

-inline_debug_ info

/ Q@ nline_debug_info

Preserve the source
position of inlined
code instead of
assigning the call-site
source position to
inlined code.

OFF

/Qp

Enable single-file IP
optimizations (within
files).

OFF

-ip_no_inlining

/[Q p_no_inlining

Optimize the behavior
of IP: disable full and
partial inlining
(requires - i p or -

i po).

OFF

-i po

/ Q po

Enable multifile IP
optimizations
(between files).

OFF

-i po_obj

/ Q po_obj

Optimize the behavior
of IP: force
generation of real
object files (requires

-i po).

OFF

-KPI C

Generate position
independent code
(same as - Kpi ¢).

OFF

-Kpi c

Generate position
independent code
(same as - KPI C).

OFF

-1 ong_doubl e

/ @ ong_doubl e

Enable 80-bit long
double.

OFF

NA

Instruct linker to
produce map file.

OFF

I QM

Generate makefile
dependency
information.

OFF

33

Intel® C++ Compiler for Linux* Systems User's Guide

profiling summary
file.

Linux* Windows* Description Linux
Default

-np 1 Op[-] Maintain floating- OFF
point precision
(disables some
optimizations).

-mpl | Qorec Improve floating- OFF
point precision (speed
impact is less than -
np).

-nobss_init / Qnobss_init Disable placement of | OFF
zero-initialized
variables in BSS (use
DATA).

-nolib_inline /Q[-] Disable inline OFF
expansion of intrinsic
functions.

-0 /2 OFF

-ofile [Fefile or/Fofile Name output file. OFF

-00 / Disable optimizations. | OFF

-0 / 01 Optimizes for speed. | OFF

-2 /I 2 ON

-P | EP Preprocess to file. OFF

-pc32 [Qc 32 Set internal FPU OFF
precision to 24-bit
significand.

- pc64 /| Qpc 64 Set internal FPU OFF
precision to 53-bit
significand.

-pc80 / Qc 80 Set internal FPU ON
precision to 64-bit
significand.

-prec_div | Qorec_div Improve precision of | OFF
floating-point divides
(some speed impact).

-prof _dirdirectory |/ Qorof _dirdirectory | Specify directory for | OFF
profiling output files
(*. dyn and *. dpi).

-prof _filefilename |/ Qorof _filefilename | Specify file name for | OFF

34

Compiler Options Quick Reference

Linux*

Windows*

Description

Linux
Default

- prof _gen[x]

/ Qor of _genx

Instrument program
for profiling; with the
X qualifier, extra
information is
gathered.

OFF

- prof _use

[Qor of _use

Enable use of
profiling information
during optimization.

OFF

-Qnstall dir

NA

Setdi r as root of
compiler installation.

OFF

-Qocation,str,dir

/ @ ocation,tool, path

Setdi r asthe
location of tool
specified by st r.

OFF

-Qoption,str,opts

/[Qoption,tool,list

Pass options opts to
tool specified by str.

OFF

-ap,-p

NA

Compile and link for
function profiling
with UNIX* gprof
tool.

OFF

-rcd

/ Qrcd

Enable fast floating-
point-to-integer
conversions.

OFF

-restrict

[Qrestrict

Enable the restrict
keyword for
disambiguating
pointers.

OFF

/'S

Generates
assemblable files with
. S suffix, then stops
the compilation.

OFF

-sox[-]

/ s0x

Enable [disable]
saving of compiler
options and version in
the executable.

- SOX-

- synt ax

| Zs

Perform syntax check
only.

OFF

-t pp5

| Gb

Optimize for Pentium
processor.

OFF

-t pp6

| &6

Optimize for Pentium
Pro, Pentium II and
Pentium III
processors.

OFF

35

Intel® C++ Compiler for Linux* Systems User's Guide

Linux*

Windows*

Description

Linux
Default

-t pp7

I G7

Optimize for Pentium
4 processor.

OFF

- Uname

/ Uname

Remove predefined
macro.

OFF

-unrol 10

/Qunroll0

Disable loop
unrolling.

OFF

-V

Qv

Display compiler
version information.

OFF

[w

Display errors.

OFF

'\

Enable remarks,
warnings and errors.

/W

Produces less verbose
diagnostics.

OFF

/W

Control diagnostics.
Display errors (n=0).
Display warnings and
errors (n=1). Display
remarks, warnings,
and errors (n=2).

OFF

~wdL1[, L2, ...

/ Qnd[t ag]

Disable diagnostics
L1 through LN.

OFF

-well[, L2, ...

I Qne[t ag]

Change severity of
diagnostics L1
through LN to error.

OFF

-wnn

/ Qwn[t ag]

Print a maximum of n
errors.

OFF

- W64

/ W64

Print diagnostics for
64-bit porting.

OFF

~wrL1[, L2, ...

/ Qwr [t ag]

Change severity of
diagnostics L1
through LN to
remark.

OFF

~wall[, L2, ...

I Qw(t ag]

Change severity of
diagnostics L1
through LN to
warning.

OFF

/' X

Remove standard
directories from
include file search
path.

OFF

36

Compiler Options Quick Reference

Linux* Windows* Description Linux
Default
-x{ K| WN B| P} I X{ KW N B| P} Generates specialized | OFF

code for processor-
specific codes K, WN,
B, and P.

» K=Intel
Pentium IIT and
compatible
Intel processors

* W=lIntel
Pentium 4 and
compatible
Intel processors

e N=Intel
Pentium 4 and
compatible
Intel processors

» B=Intel
Pentium M and
compatible
Intel processors

e P=Intel
Pentium 4
processor with
Streaming
SIMD
Extensions 3
(SSE3)

-Zp{ 1] 2| 4| 8| 16} I Zp[n] Packs structures on 1, | OFF
2,4, 8, or 16 byte
boundaries.

Default Compiler Options

* Options specific to IA-32 architecture
* Options specific to the [tanium® architecture

* Options supported on both [A-32 and Itanium-based systems.

Option Description

-c99 Enables C99 support for C programs
-falias Assume aliasing in program.
-ffnalias Assume aliasing within functions

37

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

-gcc-versi on=320

This option provides compatible behavior with gcc, where nnn
indicates the gcc version. This version of the Intel compiler supports
- gcc- ver si on=320 (Default).

-ncpu=penti un?

Optimizes for Intel® Pentium® 4 processor (IA-32 systems only).

-nTtpu=itani unk

Optimizes for Intel® Itanium® 2 processor (Itanium-based systems
only)

Itanium-based
systems only

-2 Same as - OL on [A-32. Same as - Oon Itanium-based systems.

-l Enables inlining of functions declared with the __i nl i ne
keyword. Also enables inlining according to the C++ language.

- pc80 Set internal FPU precision to 64-bit significand.

IA-32 only

-prefetch Enables the insertion of software prefetching by the compiler.

- SOX- Disables the saving of compiler options and version information in

[A-32 only the executable file.

- st d=c99 Enable C99 support for C programs.

-t pp2 Target optimization to the Intel Itanium 2 processor. Generated code

is compatible with the Intel Itanium processor.

-t pp7 Targets optimizations for the Intel Pentium 4 processors.
IA-32 only

-wl Control diagnostics. Displays warnings and errors.
-Zpl6 Packs structures on 16 byte boundaries.

38

Building and Debugging Applications

Getting Started

Default Behavior of the Compiler

If you do not specify any options when you invoke the Intel® C++ Compiler, the compiler uses
the following default settings:

* Produces executable output with filename a. out .
* Invokes options specified in a configuration file first. See Configuration Files.

* The location of shared objects is specified by the LD_LI BRARY_PATH environment
variable.

e Sets 8 bytes as the strictest alignment constraint for structures.
* Displays error and warning messages.

* Performs standard optimizations using the default - O2 option. See Setting Optimization
Levels.

* On operating systems that support characters in Unicode* (multi-byte) format, the compiler
will process file names containing these characters.

If the compiler does not recognize a command-line option, that option is ignored and a warning is
displayed. See Diagnostic Messages for detailed descriptions about system messages.

Compilation Phases

To produce an executable file, the compiler performs by default the compile and link phases.
When invoked, the compiler driver determines which compilation phases to perform based on the
file name extension and the compilation options specified in the command line.

The compiler passes object files and any unrecognized file name to the linker. The linker then
determines whether the file is an object file (. 0) or a library (. @). The compiler driver handles all
types of input files correctly, thus it can be used to invoke any phase of compilation.

The relationship of the compiler to system-specific programming support tools is presented in the
diagram below:

39

Intel® C++ Compiler for Linux* Systems User's Guide

Application Development Cycle

- .
Text Editer
Sournce
Phasze|:
Trans kticn
Campiler
M
i
Cbject
Code
] Jazr
Fhasze Il
Linking ™, ik
.
i
Phaszelll:
Execution

CIM0AaT4

Building Applications from the Command Line

Invoking the Compiler
The ways to invoke Intel® C++ Compiler are as follows:
* Invoke directly: Running Compiler from the Command Line

e Use system make file: Running from the Command Line with make
Invoking the Compiler from the Command Line
There are two necessary steps to invoke the Intel® C++ Compiler from the command line:

1. set the environment

2. invoke the compiler usingi cC ori cpc

40

Building and Debugging Applications

Set the Environment Variables

Before you can operate the compiler, you must set the environment variables to specify locations
for the various components. The Intel C++ Compiler installation includes shell scripts that you can
use to set environment variables. With the default compiler installation, these scripts are:

« J/opt/intel _cc_80/bin/iccvars.sh
e J/opt/intel _cc_80/bin/iccvars.csh
To run an environment script, enter one of the following on the command line:
pronpt >source /opt/intel _cc_80/bin/iccvars. sh
or
pronpt >source /opt/intel _cc_80/bin/iccvars.csh

If you want the script to run automatically when you start Linux*, add the same command to the
end of your startup file.

Sample .bash_profil e entry fori ccvars. sh:

set environnent vars for Intel C++ conpiler
source /opt/intel _cc_80/bin/iccvars. sh

Invoking the Compiler with icc or icpc

You can invoke the Intel C++ Compiler on the command line with eitheri cc ori cpc. Each
invocation includes the C++ run-time libraries and header files. Use the - no_cpprt option if
you do not want the C++ run-time libraries and headers.

Command-line Syntax

When you invoke the Intel C++ Compiler with i cc ori cpc, use the following syntax:

prompt >{icc|icpc} [options] filel [file2 . . .] [linker options]
Argument Description
options Indicates one or more command-line options. The compiler recognizes
one or more letters preceded by a hyphen (-). See the Options Quick
Reference

filel, file2 |Indicatesone or more files to be processed by the compilation system.
S You can specify more than one file. Use a space as a delimiter for
multiple files.

l'i nker Indicates options directed to the linker.
opti ons

Example:

pronpt >i cpc -prec_div -axWmy_sourcel.cpp nmy_source2.cpp -Bstatic

41

Intel® C++ Compiler for Linux* Systems User's Guide

Invoking the Compiler from the Command Line with make

To run make from the command line using Intel® C++ Compiler, make sure that/ usr/ bi n is
in your path. If you use a C shell, you can edit your . cshr ¢ file and add:

setenv PATH /usr/bin:<full path to Intel conpiler>
]
<4 Note

To use the Intel compiler, your makefile must include the setting CC=i cc. Use the same setting
on the command line to instruct the makefile to use the Intel compiler. If your makefile is written
for gce, the GNU* C compiler, you will need to change those command line options not
recognized by the Intel compiler.

Then you can compile:
prompt >make -f ny_nmakefile
Compiler Input Files

The Intel® C++ Compiler recognizes the file name extensions listed in the table below:

Filename Interpretation

filename. a Object library

filenane.i When you invoke the compiler with i cc, the . i files are treated as C
source files. The . i files are treated as C++ sources if you compile with
i cpc.

filenane.o Compiled object module

filename.s Assembly file

filenanme.so | Shared object file

filenane. S Assembly file that requires preprocessing

filenane.c C language source file

enane. C C++ language source file
enane. cc

enane. cpp
enane. cxx

42

Building and Debugging Applications

Compilation Options

This section describes the Intel® C++ Compiler options that determine the compilation process
and output. By default, the compiler converts source code directly to an executable file.
Appropriate options allow you to control the process by directing the compiler to produce:

» Preprocessed files (. i) with the - P option.

e Assembly files (. S) with the - S option.

* Object files (. 0) with the - ¢ option.

* Executable files (. out) by default.

You can also name the output file or designate a set of options that are passed to the linker. If you
specify a phase-limiting option, the compiler produces a separate output file representing the
output of the last phase that completes for each primary input file.

Preprocessor Options

This section describes the options you can use to direct the operations of the preprocessor.
Preprocessing performs such tasks as macro substitution, conditional compilation, and file

inclusion.

Preprocessing Options

Option

Description

Anane[(val ues, ..

)1

Associates a symbol name with the specified sequence of
val ues . Equivalent to an #assert preprocessing directive.

- A

Causes all predefined macros and assertions to be inactive.

-C

Preserves comments in preprocessed source output.

- Dnan®e[(val ue)]

Defines the macro name and associates it with the specified
val ue . The default (- Dnane) defines a macro with a
val ue ofl.

-E Directs the preprocessor to expand your source module and
write the result to standard output.

- EP Directs the preprocessor to expand your source module and
write the result to standard output. Does not include #l i ne
directives in the output.

-P Directs the preprocessor to expand your source module and
store the result ina . i file in the current directory.

- Unane Suppresses any automatic definition for the specified macro

nane .

43

Intel® C++ Compiler for Linux* Systems User's Guide

Preprocessing Only

Using

Using

Using

Use the - E, - P or - EP option to preprocess your source files without compiling them. When
using these options, only the preprocessing phase of compilation is activated.

-E

When you specify the - E option, the compiler's preprocessor expands your source module and
writes the result to St dout . The preprocessed source contains #| i ne directives, which the
compiler uses to determine the source file and line number. For example, to preprocess two source
files and write them to st dout , enter the following command:

prompt >i cpc -E progl. cpp prog2.cpp

-P

When you specify the - P option, the preprocessor expands your source module and directs the
outputto a . i file instead of st dout . Unlike the - E option, the output from - P does not include
#l i ne number directives. By default, the preprocessor creates the name of the output file using
the prefix of the source file name with a . i extension. You can change this by using the - of i | €

option. For example, the following command creates two files named pr ogl. i and prog2. i,
which you can use as input to another compilation:

prompt >i cpc -P progl.cpp prog2.cpp

& Caution

When you use the - P option, any existing files with the same name and extension are overwritten.

EP

Using the - EP option directs the preprocessor to not include #| i ne directives in the output. - EP
is equivalent to - E - P.

pronpt >i cpc - EP progl. cpp prog2.cpp
Preserving Comments in Preprocessed Source Output

Use the - C option to preserve comments in your preprocessed source output. Comments following
preprocessing directives, however, are not preserved.

Preprocessing Directive Equivalents

Using

You can use the - A, - D, and - U options as equivalents to preprocessing directives:

* - Aisequivalent to a #assert preprocessing directive

* - Disequivalent to a #def i ne preprocessing directive

* - Uisequivalent to a #undef preprocessing directive
-A

Use the - A option to make an assertion. Syntax: - Anane[(val ue)].

Argument | Description

name Indicates an identifier for the assertion

val ue Indicates a val ue for the assertion. Ifa val ue is specified, it should be
quoted, along with the parentheses delimiting it.

44

Building and Debugging Applications

For example, to make an assertion for the identifier f r ui t with the associated values or ange
and banana use the following command:

prompt >i cpc - A'fruit(orange, banana)" progl. cpp
Using -D

Use the - Doption to define a macro. Syntax: - Dnane[=val ue] .

Argument | Description

name The name of the macro to define.

val ue Indicates a value to be substituted for name. If you do not enter a value, name is
set to 1. The value should be quoted if it contains non-alphanumerics.

For example, to define a macro called SI ZE with the value 100 use the following command:
pronpt >i cpc - DSI ZE=100 progl. cpp
The - D option can also be used to define functions. For example:
prompt >i cpc -D'f (x)=x" progl.cpp
Using -U

Use the - U option to remove (undefine) a pre-defined macro. Syntax: - Uname.

Argument | Description

name The name of the macro to undefine.

B Note

If you use - Dand - U in the same compilation, the compiler processes the - D option before - U,
rather than processing them in the order they appear on the command line.

45

Intel® C++ Compiler for Linux* Systems User's Guide

Predefined Macros

The predefined macros available for the Intel® C++ Compiler are described in the table below.
The Ar chitectur e column indicates which Intel architecture supports the macro.

Predefined macros specified by the ISO/ANSI standard are not listed in the table. For a list of all
macro definitions in effect, use the - E - dMoptions. For example:

pronpt >i cpc -E -dM progl. cpp

Macro Name Value Architecture
__DATE__ Current date Both

__ECC 1 Itanium® architecture only
__EDG__ 1 Both

__EDG VERSI ON__ 302 Both

__ELF__ 1 Both

__extension__ (no value) Both

_gnu_linux__ 1 Both

__G\NUC__ 3 Both

__GNUC_M NOR__ 2 Both
__GNUC_PATCHLEVEL_ 0 Both

__GXX_ABI _VERSI ON 102 Both

__HONOR_STD 1 [A-32 only

__ 1386 1 IA-32 only

1386 1 [A-32 only

i 386 1 IA-32 only

__ia6b4 1 Itanium architecture only
__ia64__ 1 Itanium architecture only
i a64 1 Itanium architecture only
_lcc 800 IA-32 only

46

Building and Debugging Applications

Macro Name Value Architecture
I NTEL_COWPI LER 800 Both
_I NTEGRAL_MAX_BI TS 64 Itanium architecture only
__itanium__ 1 Itanium architecture only
i nux 1 Both
__linux__ 1 Both
i nux 1 Both
__LONG DOUBLE_SIZE |80 IA-32 only
__ | p64 1 Itanium architecture only
__LpP64__ 1 Itanium architecture only
_LP64 1 Itanium architecture only
__NO INLINE__ 1 Both
__NO_NMATH_I NLI NES 1 Both
__NO _STRI NG _I NLI NES 1 Both
__OPTIM ZE__ 1 Both
PGO| NSTRUMENT 1 Both
__PTRDI FF_TYPE__ i nt Both
on [A-32
| ong
on [tanium
architecture
__QVBPP_ 1 [A-32 only
__REAQ STER _PREFI X (no value) Both
__SIGNED_CHARS 1 Both
__SIZE TYPE _ unsi gned Both
on [A-32
unsi gned | ong
on [tanium
architecture
__STDC 1 Both

47

Intel® C++ Compiler for Linux* Systems User's Guide

Macro Name Value Architecture
___STDC HOSTED 1 Both
__TIME__ Current time Both
__unix 1 Both
_unix__ 1 Both
uni x 1 Both
__USER LABEL_PREFI X__ | (no value) Both
__VERSI ON__ Both
__ WCHAR TYPE | ong int Both

on [A-32

i nt

on [tanium

architecture
__ WNT_TYPE__ unsi gned int | Both

Suppress Macro Definition

Use the - Uname option to suppress any macro definition currently in effect for the specified
nane. The - U option performs the same function as an #undef preprocessor directive.

Compilation Environment

Customizing the Compilation Environment

For IA-32 and the Intel® Itanium® architecture, you will need to set a compilation environment.
To customize the environment used during compilation, you can specify:

Environment Variables -- the paths where the compiler and other tools can search for
specific files.

Configuration Files -- the options to use with each compilation.
Response Files -- the options and files to use for individual projects.

Include Files -- the names and locations of source header files.

Environment Variables

You can customize your environment by specifying paths where the compiler can search for
special files such as libraries and include files.

48

LD_LI BRARY_PATH specifies the location for shared objects.
PATH specifies the directories the system searches for binary executable files.

I CCCFG specifies the configuration file for customizing compilations when invoking the
compiler using i cC.

| CPCCFG specifies the configuration file for customizing compilations when invoking the
compiler using i cpc.

Several environment variables are supported to specify the location for temporary files. The
compiler searches for the following variables in the order specified: TMP, TMPDI R, and
TEMP. If none of these variables are found, temporary files are stored in / t np.

Building and Debugging Applications

* | A32ROOT (IA32-based systems) points to the directory containing the bi n, | i b,

i ncl ude and substitute header directories.

* | A64ROOT (Itanium®-based systems) points to the directory containing the bi n, | i b,

i ncl ude and substitute header directories.

GNU* Environment Variables

The Intel C++ Compiler supports the following GNU environment variables:

» CPATH- Path to include directory for C/C++ compilations

e C_I NCLUDE_PATH - Path include directory for C compilations

* CPLUS_ | NCLUDE_PATH - Path include directory for C++ compilations.

* LI BRARY_PATH- The value of LI BRARY_PATH s a colon-separated list of directories,

much like PATH.

» DEPENDENCI ES_QUTPUT - If this variable is set, its value specifies how to output
dependencies for Make based on the non-system header files processed by the compiler.
System header files are ignored in the dependency output.

* SUNPRO_DEPENDENCI ES - This variable is the same as DEPENDENCI ES OUTPUT,

except that system header files are not ignored.

Compilation Environment Options

The Intel® C++ Compiler installation includes shell scripts that you can use to set environment
variables. See Invoking the Compiler from the Command Line for more information.

Configuration Files

You can decrease the time you spend entering command-line options and ensure consistency by
using the configuration file to automate often-used command-line entries. You can insert any valid
command-line option into the configuration file. The compiler processes options in the
configuration file in the order they appear followed by the command-line options that you specify

when you invoke the compiler.

f) Note

Options in the configuration file will be executed every time you run the compiler. If you have
varying option requirements for different projects, see Response Files.

How to Use Configuration Files

The following example illustrates a basic configuration file. After you have written the . cf g file,
simply ensure it is in the same directory as the compiler's executable file when you run the
compiler. The text following the pound (#) character is recognized as a comment. The

configuration file isi cc. cf g.

Sanple configuration file.

- DMY_PRQJECT

-1 /project/include

Define preprocessor macro MY_PROJECT.

Additional directories to be searched
for |NCLUDE files, before the default.

49

Intel® C++ Compiler for Linux* Systems User's Guide

Specifying the Location with ICCCFG
You can use the | CCCFGenvironment variable to specify the location of your configuration file:
| CCCFG=/ cpp/ confi g/ ny_options.cfg

Each time you invoke the compiler with i cc, my_opti ons. cf g is used as your configuration
file. The | CPCCFGenvironment variable is supported for invoking the compiler with i cpc.

See Environment Variables.
Response Files

Use response files to specify options used during particular compilations. Response files are
invoked as an option on the command line. Options in a response file are inserted in the command
line at the point where the response file is invoked.

Sample Response Files

response file: responsel.txt
conpile with these options

- axW
-pch

end of responsel file

response file: response2.txt
conpile with these options

-n‘pl
-strict_ans

end of response2 file

Use response files to decrease the time spent entering command-line options and to ensure
consistency by automating command-line entries. Use individual response files to maintain
options for specific projects to avoid editing the configuration file when changing projects.

Any number of options or file names can be placed on a line in the response file. Several response
files can be referenced in the same command line.

The syntax for using response files is as follows:

pronpt >i cpc @ esponsel. txt sourcel.cpp @ esponse2.txt source2.cpp

ff) Note

An "at" sign (@ must precede the name of the response file on the command line.
Include Files

Include directories are searched in the default system areas and whatever is specified by the -
I di rect ory option. For multiple search directories, multiple - | di r ect ory commands must
be used. The compiler searches directories for include files in the following order:

e directory of the source file that contains the include
e directories specified by the - | option
How to Remove Include Directories

Use the - X option to prevent the compiler from searching the default system areas. You can use
the - X option with the - | option to prevent the compiler from searching the default path for
include files and direct it to use an alternate path.

50

Building and Debugging Applications

For example, to direct the compiler to search the path / al t /i ncl ude instead of the default
path, do the following:

prompt >i cpc -X -1/alt/include prog.cpp
See also Searching for Include Files.
Searching for Include Files

By default, the compiler searches for the standard include files in the directories specified in the
CPATH, C_| NCLUDE_PATH, and CPLUS_| NCLUDE_PATH environment variables. You can
indicate the location of include files in the configuration file.

How to Specify an Include Directory

Use the - | di r ect or y option to specify an additional directory in which to search for include
files. For multiple search directories, multiple - | di r ect or y commands must be used. Included
files are brought into the program with a #i ncl ude preprocessor directive. The compiler
searches directories for include files in the following order:

» directory of the source file that contains the include
» directories specified by the - | option

e directories specified in the CPATH, C_I NCLUDE_PATH, and CPLUS_| NCLUDE_PATH
environment variables

How to Remove Include Directories

Use the - X option to prevent the compiler from searching the default path specified by the
environment variables.

You can use the - X option with the - | option to prevent the compiler from searching the default
path for include files and direct it to use an alternate path.

For example, to direct the compiler to search the path / al t /i ncl ude instead of the default
path, do the following:

pronmpt >icpc -X -1/alt/include source.cpp
Controlling Compilation

If no errors occur during processing, you can use the output files from a particular phase as input
to a subsequent compiler invocation. The table below describes the options to control the output:

Option Input Output

-P * Source files Preprocessed files (. i files).

-E e Source files Preprocesses source file and directs output to st dout .
-EP » Source files Preprocesses source file, directs output to St dout , and

omits line numbers.

-C ¢ Source files Compile to object only (. 0), do not link.

e Preprocessed
files

51

Intel® C++ Compiler for Linux* Systems User's Guide

Contr

Option

Output

-S

Source files

Preprocessed
files

Generate assemblable files with . S suffix and stops the
compilation process.

- synt ax

Source files

Preprocessed
files

Emits diagnostic list of syntax errors to sdt out . There is
no output for source files free of syntax errors.

(Default)

Source files

Preprocessed
files

Assemblable
files

Object files

Libraries

Executable file (. out files).

olling Compilation Flow

Option

Description

-C

Stops the compilation process after an object file has been generated.
The compiler generates an object file for each C or C++ source file or
preprocessed source file. Also takes an assembler file and invokes the
assembler to generate an object file.

-Kpic,-KPIC

Generate position-independent code.

-l nane

Link with a library indicated in nanme.

-nobss_init

Places variables that are initialized with zeroes in the DATA section.

-P, -F Stops the compilation process after C or C++ source files have been
preprocessed and writes the results to files named according to the
compiler's default file-naming conventions.

-S Generates assemblable file only (with . S suffix), then stops the
compilation.

- SOX| - | Enables [disables] the saving of compiler options and version

IA-32 only information in the executable file. Default is - SOX- .

-Zp{ 1] 2| 4| 8] 16}

Packs structures on 1, 2, 4, 8, or 16 byte boundaries.

52

Building and Debugging Applications

Controlling Compilation Output

Option Description

-oname | Produces an assembly file with the specified file name, or the default file name if
name is not specified.

-S Generates assemblable file only (with . S suffix), then stops the compilation.

Specifying Alternate Tools and Paths

You can direct the compiler to specify alternate tools for preprocessing, compilation, assembly,
and linking. Further, you can invoke options specific to your alternate tools on the command line.
The following sections explain how to use - Q ocat i on and - Qopt i on to do this.

How to Specify an Alternate Component

Use - Q ocat i on to specify an alternate path for a tool. This option accepts two arguments
using the following syntax:

prompt >i cpc -Q ocation, tool, path

tool [Description

CPppP | Specifies the compiler front-end preprocessor.

c Specifies the C++ compiler.

asm| Specifies the assembler.

I 'd | Specifies the linker.

pat h is the complete path to the tool.

How to Pass Options to Other Programs

Use - Qopt i on to pass an option specified by opt | i st toat ool , where opt | i st isa
comma-separated list of options. The syntax for this command is the following:

pronpt >i cpc - Qoption,tool,optlist

tool [Description

CPpP | Specifies the compiler front-end preprocessor.

c Specifies the C++ compiler.

asm| Specifies the assembler.

I 'd | Specifies the linker.

opt | i st indicates one or more valid argument strings for the designated program. If the
argument is a command-line option, you must include the hyphen. If the argument contains a
space or tab character, you must enclose the entire argument in quotation characters (""). You
must separate multiple arguments with commas. The following example directs the linker to create
a memory map when the compiler produces the executable file from the source.

53

Intel® C++ Compiler for Linux* Systems User's Guide

prompt >i cpc - Qoption,link, -map, proto. map proto.cpp

The - Qopti on, | i nk option in the preceding example is passing the - map option to the linker.
This is an explicit way to pass arguments to other tools in the compilation process. Also, you can
use the - XI i nker val to pass values (val) to the linker.

Monitoring Data Settings

The options described below provide monitoring of Intel compiler-generated code.

Specifying Structure Tag Alignments
You can specify an alignment constraint for structures and unions in two ways:
* Place a pack pragma in your source file, or
* Enter the alignment option on the command line

Both specifications change structure tag alignment constraints.

Flushing Denormal Values to Zero for Itanium-based Systems Only

Option - f t z flushes denormal results to zero when the application is in the gradual underflow
mode. Use this option if the denormal values are not critical to application behavior. Flushing the
denormal values to zero with - f t z may improve performance of your application. The default
status of - f t z is OFF. By default, the compiler lets results gradually underflow.

The - f t z switch only needs to be used on the source containing function mai n() . The effect of
the - f t z switch is to turn on FTZ mode for the process started by mai n() . The initial thread and
any threads subsequently created by that process will operate in FTZ mode.

*f-fj Note

The - O3 option turns - f t z ON. Use - f t z- to disable flushing denormal results to zero.

Allocation of Zero-initialized Variables

By default, variables explicitly initialized with zeros are placed in the BSS section. But using the -
nobss_i ni t option, you can place any variables that are explicitly initialized with zeros in the
DATA section if required.

54

Building and Debugging Applications

Precompiled Header Files

The Intel® C++ Compiler supports precompiled header (PCH) files to significantly reduce
compile times using the following options:

e -pch
e -create_pch fil enanme
e -use_pch fil ename

e ~-pch_dir dirnane

& Caution

Depending on how you organize the header files listed in your sources, these options may increase
compile times. See Organizing Source Files to learn how to optimize compile times using the PCH
options.

-pch
The - pch option directs the compiler to use appropriate PCH files. If none are available, they are
created as sour cef i | e. pchi . This option supports multiple source files, such as the ones
shown in Example 1:
Example 1 command line:
pronpt >i cpc -pch sourcel. cpp source2.cpp
Example 1 output when .pchi filesdo not exist:
"sourcel.cpp": creating preconpiled header file "sourcel.pchi”
"source2.cpp": creating preconpiled header file "source2.pchi”
Example 1 output when .pchi filesdo exist:
"sourcel. cpp": using preconpil ed header file "sourcel. pchi"
"source2. cpp": using preconpil ed header file "source2.pchi"
f) Note
The - pch option will use PCH files created from other sources if the headers files are the same.
For example, if you compile sour cel. cpp using - pch, then sour cel. pchi is created. If
you then compile sour ce2. cpp using - pch, the compiler will use sour cel. pchi ifit
detects the same headers.

-create_pch

Use the - create_pch fil ename option if you want the compiler to create a PCH file called
fi | enane. Note the following regarding this option:

e Thefil enane parameter must be specified.

e Thefil enanme parameter can be a full path name.

e The full pathto fi | ename must exist.

* The. pchi extension is not automatically appended to f i | enane.

* This option cannot be used in the same compilation as - use_pch fi | enane.

* The-create_pch fil ename option is supported for single source file compilations
only.

55

Intel® C++ Compiler for Linux* Systems User's Guide

Example 2 command line:
pronpt >i cpc -create_pch /pch/source32. pchi source.cpp

Example 2 output:

"source.cpp": creating preconpiled header file
"/ pch/ source32. pchi"

-use_pch filename

This option directs the compiler to use the PCH file specified by f i | enane. It cannot be used in
the same compilation as - cr eat e_pch fil enanme. The - use_pch fil enanme option
supports full path names and supports multiple source files when all source files use the same

. pchi file.

Example 3 command line:
pronpt >i cpc -use_pch /pch/source32. pchi source. cpp

Example 3 output:
"source.cpp": using preconpiled header file /pch/source32. pchi

-pch_dir dirname

Use the - pch_di r di rnane option to specify the path (di r nane) to the PCH file. You can
use this option with - pch, -create_pch fil enane,and-use_pch fil enane.

Example 4 command line:
pronpt >i cpc -pch -pch_dir /pch source32.cpp

Example 4 output:

"source32.cpp": creating preconpiled header file
/ pch/ sour ce32. pchi

Organizing Source Files

If many of your source files include a common set of header files, place the common headers first,
followed by the #pr agma hdr st op directive. This pragma instructs the compiler to stop
generating PCH files. For example, if sour cel. cpp, sour ce2. cpp, and sour ce3. cpp all
include conmon. h, then place #pr agma hdr st op after conmon. h to optimize compile
times.

#i ncl ude "conmon. h"
#pragma hdr st op
#1 ncl ude "nonconmon. h"

When you compile using the - pch option:

prompt >i cpc -pch sourcel. cpp source2.cpp source3.cpp

the compiler will generate one PCH file for all three source files:

"sourcel.cpp": creating preconpiled header file "sourcel. pchi"
"source2. cpp": using preconpil ed header file "sourcel. pchi"
"source3. cpp": using preconpil ed header file "sourcel. pchi"

If you don't use #pr agna hdr st op, a different PCH file is created for each source file if
different headers follow conmon. h, and the subsequent compile times will be longer. #pr agna
hdr st op has no effect on compilations that do not use these PCH options.

56

Building and Debugging Applications

Linking

This topic describes the options that let you control and customize the linking with tools and
libraries and define the output of the | d linker. See the | d man page for more information on the

linker.
Option Description
-Ldirectory Instruct the linker to search di r ect ory for libraries.

-Qoption,tool,list

Passes an argument list to another program in the compilation
sequence, such as the assembler or linker.

-shar ed

Instructs the compiler to build a Dynamic Shared Object (DSO)
instead of an executable.

-shared-|i bcxa

- shar ed- | i bcxa has the opposite effect of - st ati c-

| i bcxa. When it is used, the Intel-provided | i bcxa C++
library is linked in dynamically, allowing the user to override the
static linking behavior when the - St at i ¢ option is used. Note:
By default, all C++ standard and support libraries are linked
dynamically.

-i _dynam ¢ Specifies that all Intel-provided libraries should be linked
dynamically.
-static Causes the executable to link all libraries statically, as opposed to

dynamically.
When - st at i ¢ is not used:

« /lib/ld-1inux.so. 2 islinked in
e all other libs are linked dynamically

When - st ati ¢ is used:
e /lib/ld-1inux.so. 2 isnotlinked in

e all other libs are linked statically

-static-libcxa

By default, the Intel-provided | i bcxa C++ library is linked in
dynamically. Use - st ati c- | i bcxa on the command line to
link | i bcxa statically, while still allowing the standard libraries
to be linked in by the default behavior.

-Bstatic This option is placed in the linker command line corresponding to
its location on the user command line. This option is used to
control the linking behavior of any library being passed in via the
command line.

- Bdynami ¢ This option is placed in the linker command line corresponding to

its location on the user command line. This option is used to
control the linking behavior of any library being passed in via the
command line.

57

Intel® C++ Compiler for Linux* Systems User's Guide

Suppressing Linking

Use the - ¢ option to suppress linking. For example, entering the following command produces the
object filesfil el.oandfil e2. o:

prompt>icpc -c filel.cpp file2.cpp
)

~—# Note

The preceding command does not link these files to produce an executable file.

Debugging
This section describes the basic command line options that you can use as tools to debug your
compilation and to display and check compilation errors. The options in this section describe:
* Parsing for Syntax Only

* Optimizations and Debugging

Parsing for Syntax Only

Use the - synt ax option to stop processing source files after they have been parsed for C++
language errors. This option provides a method to quickly check whether sources are syntactically
and semantically correct. The compiler creates no output file. In the following example, the
compiler checks pr og. cpp. and displays diagnostic information to the standard error output:

pronpt >i cpc -syntax prog.cpp
Optimizations and Debugging

This topic describes the command-line options that you can use to debug your compilation and to
display and check compilation errors. The options that enable you to get debug information while
optimizing are as follows:

Option Description
-0 Disables optimizations. Enables the - f p option.
-g Generates symbolic debugging information and line numbers in the object

code for use by the source-level debuggers. Turns off - O2 and makes -
Q0 the default unless - OL, - O2, or - OB is explicitly specified in the
command line together with - g.

-fp Disable using the EBP register as general purpose register.
IA-32 only
Option Effect on -fp

-0L,- @2, or- @8 | Disables - f p.

-0 Enables - f p.

58

Building and Debugging Applications

Combining Optimization and Debugging

The - Q0 option turns off all optimizations so you can debug your program before any
optimization is attempted. To get the debug information, use the - g option. The compiler lets you
generate code to support symbolic debugging while - OL, - O2, or - O3 is specified on the
command line along with -g, which produces symbolic debug information in the object file.

Note that if you specify the - OL, - O2, or - O3 option with the - g option, some of the debugging
information returned may be inaccurate as a side-effect of optimization.

It is best to make your optimization and/or debugging choices explicit:

» Ifyou need to debug your program excluding any optimization effect, use the - Q0 option,
which turns off all the optimizations.

* Ifyou need to debug your program with optimization enabled, then you can specify the -
QL, - A2, or - C8 option on the command line along with - g.

B Note

The - g option slows down the program when - OL, - O2, or - O3 is not specified. In this case - g
turns on - Q0 which is what slows the program down. If both - Q2 and - g are specified, the code
should run nearly the same speed as if - g were not specified.

Refer to the table below for the summary of the effects of using the - g option with the
optimization options.

These Produce these results
options
-g Debugging information produced, - Q0 enabled (optimizations disabled), -

f p enabled for IA-32-targeted compilations.

-g -al Debugging information produced, - OL optimizations enabled.

-g -@ Debugging information produced, - O2 optimizations enabled.

-g -@3 -fp | Debugging information produced, - OB optimizations enabled, - f p enabled
for IA-32-targeted compilations.

Debugging and Assembling

The assembly file is generated without debugging information, but if you produce an object file,it
will contain debugging information. If you link the object file and then use the GDB debugger on
it, you will get full symbolic representation.

59

Using Libraries

The Intel® C++ Compiler uses the GNU* C Library, Dinkumware* C++ Library, and the
Standard C++ Library. These libraries are documented at the following Internet locations:

GNU C Library

http://www.gnu.org/manual/glibc-2.2.3/html_chapter/libc_toc.html

Dinkumware C++ Library
http://www.dinkumware.com/htm_cpl/lib_cpp.html

Standard C++ Library

http://gce.gnu.org/onlinedocs/libstdc++

Default Libraries

The following libraries are supplied with the Intel® C++ Compiler:

Library Description
l'i bgui de. a For OpenMP* implementation
i bgui de. so

|'i bgui de_stats.a | OpenMP static library for the parallelizer tool with performance
|'i bgui de_st at's. so | statistics and profile information

|'i bonpstub. a Library that resolves references to OpenMP subroutines when
OpenMP is not in use

[ibsvn.a Short vector math library

l[ibirc.a Intel support library for PGO and CPU dispatch
libircm.a Mulit-thread versiononl i birc. a
l'ibinf.a Intel math library

l'i binf.so

l'ibcprts.a Dinkumware* C++ Library

libcprts.so

libcprts.so.3

['i bunwi nd. a Unwinder library
| i bunwi nd. so
i bunwi nd. so. 3

l'i bcxa. a Intel run time support for C++ features
l'i bcxa. so
i bcxa.so. 3

Using Libraries

Library Description

l'i bcxaguard. a Used for interoperability support with the - cxx| i b- gcc option.
|'i bcxaguard. so See gec Interoperability.

I i bcxaguard. so. 3

When you invoke the - cxx| i b- gcc option, the following replacements occur:

e libcprtsisreplaced with | i bst dc++ from the gcc* distribution (3.2 or newer)
e libcxaandlibunw nd are replaced by | i bgcc from the gec distribution (3.2 or
newer)

If you want to link your program with alternate or additional libraries, specify them at the end of
the command line. For example, to compile and link pr og. cpp with myl i b. a, use the
following command:

pronpt >i cpc prog.cpp nylib.a

The myl i b. a library appears prior to the | i bi nf . a library in the command line for the | d
linker.

& Caution

The Linux* system libraries and the compiler libraries are not built with the - al i gn option.
Therefore, if you compile with the - al i gn option and make a call to a compiler distributed or
system library, and have | ong | ong, doubl e, or| ong doubl e types in your interface, you
will get the wrong answer due to the difference in alignment. Any code built with - al i gn
cannot make calls to libraries that use these types in their interfaces unless they are built with -

al i gn (in which case they will not work without - al i gn).

Math Libraries

The Intel math library, | i bi nf . a, contains optimized versions of math functions found in the
standard C run-time library. The functions in | i bi nf . a are optimized for program execution
speed on Intel® Pentium® III and Pentium 4 processors. The Itanium® compiler also includes a
['i bi nf. a designed to optimize performance on Itanium-based systems. The Intel math library is
linked by default.

See Managing Libraries and Intel Math Library.

61

Intel® C++ Compiler for Linux* Systems User's Guide

Intel® Shared Libraries

By default, the Intel® C++ Compiler links Intel-provided C++ libraries dynamically. The GNU*
and Linux* system libraries are also linked dynamically.

Options for Shared Libraries

Option Description

-i_dynam ¢ | Use the - i _dynami ¢ option to link Intel-provided C++ libraries
dynamically (default). This has the advantage of reducing the size of the
application binary, but it also requires the libraries to be on the systems
where the application runs.

-shared The - shar ed option instructs the compiler to build a Dynamic Shared
Object (DSO) instead of an executable. For more details, refer to the | d man
page documentation.

-fpic Use the - f pi ¢ option when building shared libraries for Itanium-based
systems. It is required for the compilation of each object file included in the
shared library.

Managing Libraries

The LD_LI BRARY_PATH environment variable contains a colon-separated list of directories in
which the linker will search for library (. @) files. If you want the linker to search additional
libraries, you can add their names to LD LI BRARY_PATH, to the command line, or to a response
file (see Note below). In each case, the names of these libraries are passed to the linker before the
names of the Intel libraries that the driver always specifies.

SNote

Response files are processed at the location they appear on the command line. If libraries are
specified in the response file, references from object files seen after the response file will not be
resolved in those libraries.

Modifying LD_LIBRARY_PATH

If you want to add a directory, / | i bs for example, to the LD_LI BRARY_PATH, you can do
either of the following:

* pronpt>export LD LIBRARY_PATH=/1ibs: $LD LI BRARY_PATH

» startup fileexport LD_LI BRARY_PATH=/Ii bs: $LD_LI BRARY_PATH
To compile fi | e. cpp and link it with the library nyl i b. a, enter the following command:
prompt>icpc file.cpp nylib.a
The compiler passes file names to the linker in the following order:

1. the object file

2. any objects or libraries specified on the command line, in a response file, or in a
configuration file

3. the Intel® Math Library, | i bi nf. a

62

Using Libraries

Compiling for Non-shared Libraries
This section includes information on:
* Global Symbols and Visibility Attributes
e Symbol Preemption
e Specifying Symbol Visibility Explicitly
e Other Visibility-related Command-line Options
Global Symbols and Visibility Attributes

A global symbol is one that is visible outside the compilation unit (single source file and its
include files) in which it is declared. In C/C++, this means anything declared at file level without
the st at i ¢ keyword. For example:

int x = 5; /1 gl obal data definition
extern int vy; /1 gl obal data reference

int five() /1 gl obal function definition
{ return 5; }

extern int four(); // global function reference

A complete program consists of a main program file and possibly one or more shareable object
(.so) files that contain the definitions for data or functions referenced by the main program.
Similarly, shareable objects might reference data or functions defined in other shareable objects.
Shareable objects are so called because if more than one simultaneously executing process has the
shareable object mapped into its virtual memory, there is only one copy of the read-only portion of
the object resident in physical memory. The main program file and any shareable objects that it
references are collectively called the components of the program.

Each global symbol definition or reference in a compilation unit has a visibility attribute that
controls how (or if) it may be referenced from outside the component in which it is defined. There
are five possible values for visibility:

* EXTERNAL - The compiler must treat the symbol as though it is defined in another
component. For a definition, this means that the compiler must assume that the symbol will
be overridden (preempted) by a definition of the same name in another component. See
Symbol Preemption. If a function symbol has external visibility, the compiler knows that it
must be called indirectly and can inline the indirect call stub.

* DEFAULT - Other components can reference the symbol. Furthermore, the symbol
definition may be overridden (preempted) by a definition of the same name in another
component.

* PROTECTED - Other components can reference the symbol, but it cannot be preempted by
a definition of the same name in another component.

e HIDDEN - Other components cannot directly reference the symbol. However, its address
might be passed to other components indirectly (for example, as an argument to a call to a
function in another component, or by having its address stored in a data item reference by a
function in another component).

e INTERNAL - The symbol cannot be referenced outside its defining component, either
directly or indirectly.

Static local symbols (in C/C++, declared at file scope or elsewhere with the keyword static)
usually have HIDDEN visibility--they cannot be referenced directly by other components (or, for
that matter, other compilation units within the same component), but they might be referenced
indirectly.

63

Intel® C++ Compiler for Linux* Systems User's Guide

ff—t_) Note

Visibility applies to references as well as definitions. A symbol reference's visibility attribute is an
assertion that the corresponding definition will have that visibility.

Symbol Preemption

Sometimes you may need to use some of the functions or data items from a shareable object, but
may wish to replace others with your own definitions. For example, you may want to use the
standard C runtime library shareable object, | i bc. S0, but to use your own definitions of the
heap management routines mal | oc() and f r ee() . In this case it is important that calls to
mal | oc() andfree() withinli bc. so call your definition of the routines and not the
definitions present in | i bc. so. Your definition should override, or preempt, the definition
within the shareable object.

This feature of shareable objects is called symbol preemption. When the runtime loader loads a
component, all symbols within the component that have default visibility are subject to
preemption by symbols of the same name in components that are already loaded. Since the main
program image is always loaded first, none of the symbols it defines will be preempted.

The possibility of symbol preemption inhibits many valuable compiler optimizations because
symbols with default visibility are not bound to a memory address until runtime. For example,
calls to a routine with default visibility cannot be inlined because the routine might be preempted
if the compilation unit is linked into a shareable object. A preemptable data symbol cannot be
accessed using GP-relative addressing because the name may be bound to a symbol in a different
component; the GP-relative address is not known at compile time.

Symbol preemption is a very rarely used feature that has drastic negative consequences for
compiler optimization. For this reason, by default the compiler treats all global symbol definitions
as non-preemptable (i.e., protected visibility). Global references to symbols defined in other
compilation units are assumed by default to be preemptable (i.e., default visibility). In those rare
cases when you need all global definitions, as well as references, to be preemptable, specify the -

f pi ¢ option to override this default.

Specifying Symbol Visibility Explicitly

You can explicitly set the visibility of an individual symbol using the vi si bi | i ty attribute on a
data or function declaration. For example:

int i __attribute_ ((visibility("default")));
void __attribute__ ((visibility("hidden"))) x () {...}
extern void y() __attribute ((visibilty("protected");

The vi si bi | i ty declaration attribute accepts one of the five keywords:
* external
e default
* protected
* hidden
* internal

The value of the vi si bi | i t y declaration attribute overrides the default set by the -
fvisibility,-fpic,or-fno-conmon attributes.

64

Using Libraries

If you have a number of symbols for which you wish to specify the same vi si bi | i ty attribute,
you can set the visibility using one of the five command line options:

« -fvisibility-external =file
e -fvisibility-default=file

e -fvisibility-protected=file
e -fvisibility-hidden=file

e -fvisibility-internal =file

where f i | e is the pathname of a file containing a list of the symbol names whose visibility you
wish to set. The symbol names in the file are separated by white space (blanks, TAB characters,
or newlines). For example, the command line option:

-fvisibility-protected=prot.txt

where file pr ot . t Xt contains:

a
bcd
e

sets protected visibility for symbols a, b, ¢, d, and e. This has the same effect as
__attribute__ ((visibility=("protected")))

on the declaration for each of the symbols. Note that these two ways to explicitly set visibility are
mutually exclusive--you may use __attri bute((visibilty())) on the declaration, or
specify the symbol name in a file, but not both.

You can set the default visibility for symbols using one of the command line options:
o -fvisibility=externa
e -fvisibility=default
 -fvisibility=protected
e ~-fvisibility=hidden
e -fvisibility=interna

This option sets the visiblity for symbols not specified in a visibility list file and that do not have
__attribute_ ((visibilty())) intheir declaration. For example, the command line
options:

-fvisibility=protected -fvisibility-defaul t=prot.txt

where file pr ot . t xt is as previously described, will cause all global symbols except a, b, ¢, d,

and e to have protected visibility. Those five symbols, however, will have default visibility and
thus be preemptable.

65

Intel® C++ Compiler for Linux* Systems User's Guide

Other Visibility-related Command-line Options
-fminshared

-fpic

The - f m nshar ed option specifies that the compilation unit will be part of a main program
component and will not be linked as part of a shareable object. Since symbols defined in the main
program cannot be preempted, this allows the compiler to treat symbols declared with default
visibility as though they have protected visibility (i.e., - f mi nshar ed implies -
fvisibility=protected). Also, the compiler need not generate position-independent code
for the main program. It can use absolute addressing, which may reduce the size of the global
offset table (GOT) and may reduce memory traffic.

The - f pi ¢ option specifies full symbol preemption. Global symbol definitions as well as global
symbol references get default (i.e., preemptable) visibility unless explicitly specified otherwise.

-fno-common

Normally a C/C++ file-scope declaration with no initializer and without the ext ernorstati c
keyword

int i;

is represented as a common symbol. Such a symbol is treated as an external reference, except that
if no other compilation unit has a global definition for the name, the linker allocates memory for it.
The - f no- commDnN option causes the compiler to treat what otherwise would be common
symbols as global definitions and to allocate memory for the symbol at compile time. This may

permit the compiler to use the more efficient GP-relative addressing mode when accessing the
symbol.

66

gcc* Compatibility

C language object files created with the Intel® C++ Compiler are binary compatible with the

GNU* geec compiler and glibe, the GNU C language library. C language object files can be linked
with either the Intel compiler or the gcc compiler. However, to correctly pass the Intel libraries to
the linker, use the Intel compiler. See Linking and Default Libraries for more information.

GNU C includes several, non-standard features not found in ISO standard C. Some of these
extensions to the C language are supported in this version of the Intel C++ Compiler. See

http://www.gnu.org for more information.

gcc Language Intel GNU Description and Examples

Extension Support

Statements and Yes http://gce.gnu.org/onlinedocs/gec-3.2.1/gec/

Declarations in Statement-Exprs.html#Statement%20Exprs

Expressions

Locally Declared Labels | Yes http://gce.gnu.org/onlinedocs/gece-3.2/gec/
Local-Labels.html#Local%20Labels

Labels as Values Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Labels-as-Values.html#Labels%20as%20Values

Nested Functions No http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Nested-Functions.html#Nested%20Functions

Constructing Function No http://gce.gnu.org/onlinedocs/gec-3.2/gec/

Calls Constructing-Calls.html#Constructing%20Calls

Naming an Expression's | Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/

Type Naming-Types.html#Naming%20Types

Referring to a Type with | Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/

typeof Typeof.html#Typeof

Generalized Lvalues Yes http://gce.gnu.org/onlinedocs/gece-3.2/gec/
Lvalues.html#Lvalues

Conditionals with Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/

Omitted Operands Conditionals.html#Conditionals

Double-Word Integers Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/
Long-Long.html#Long%20Long

Complex Numbers Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Complex.html#Complex

Hex Floats Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/

Hex-Floats.html#Hex%20Floats

67

Intel® C++ Compiler for Linux* Systems User's Guide

gcc Language Intel GNU Description and Examples
Extension Support
Arrays of Length Zero Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Zero-Length.html#Zero%20Length
Atrrays of Variable Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/
Length Variable-Length.html#Variable%20Length
Macros with a Variable | Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/
Number of Arguments. Variadic-Macros.html#Variadic%20Macros
Slightly Looser Rules for | No http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Escaped Newlines Escaped-Newlines.html#Escaped%20Newlines
String Literals with Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/
Embedded Newlines Multi-line-Strings.html#Multi-line%20Strings
Non-Lvalue Arrays May | Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/
Have Subscripts Subscripting.html#Subscripting
Arithmetic on void- Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Pointers Pointer-Arith.html#Pointer%20Arith
Arithmetic on Function- | Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Pointers Pointer-Arith.html#Pointer%20Arith
Non-Constant Initializers | Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Initializers.html#Initializers
Compound Literals Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Compound-Literals.html#Compound%?20Literals
Designated Initializers Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Designated-Inits.html#Designated%20Inits
Cast to a Union Type Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Cast-to-Union.html#Cast%20t0%20Union
Case Ranges Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Case-Ranges.html#Case%20Ranges
Mixed Declarations and | Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Code Mixed-Declarations.html#Mixed%20Declarations
Declaring Attributes of | Most http://gce.gnu.org/onlinedocs/gec-3.2/gec/
Functions Function-Attributes.html#Function%20Attributes
Attribute Syntax Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/

Attribute-Syntax.html#Attribute%20Syntax

68

gec* Compatibility

gcc Language Intel GNU Description and Examples

Extension Support

Pr ot ot ypes and No http://gcc.gnu.org/onlinedocs/gec-3.2/gec/

ad-Style Function-Prototypes.html#Function%20Prototypes

Functi on

Definitions

C++ Style Comments Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
C---Comments.html#C++%20Comments

Dollar Signs in Identifier | Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/

Names Dollar-Signs.html#Dollar%20Signs

The Character ESC in Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/

Constants Character-Escapes.html#Character%20Escapes

Specifying Attributes of | Most http://gcc.gnu.org/onlinedocs/gec-3.2/gec/

Variables Variable-Attributes.html#Variable%20Attributes

Specifying Attributes of | Most http://gcc.gnu.org/onlinedocs/gec-3.2/gec/

Types Type-Attributes.html#Type%20Attributes

Inquiring on Alignment | Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/

of Types or Variables Alignment.html#Alignment

An Inline Function is As | Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/

Fast As a Macro Inline.html#Inline

Assembler Instructions | Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/

with C Expression Extended-Asm.html#Extended%20Asm

Operands

Controlling Names Used | Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/

in Assembler Code Asm-Labels.html#Asm%?20Labels

Variables in Specified Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/

Registers Explicit-Reg-Vars.html#Explicit%20Reg%20Vars

Alternate Keywords Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/
Alternate-Keywords.html#Alternate%20Keywords

Incomplete enum Types | Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/
Incomplete-Enums.html#Incomplete%20Enums

Function Names as Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/

Strings Function-Names.html#Function%20Names

Getting the Return or Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/

Frame Address of a
Function

Return-Address.html#Return%20Address

69

Intel® C++ Compiler for Linux* Systems User's Guide

Function, and Type
Attributes

gcc Language Intel GNU Description and Examples
Extension Support
Using Vector Some http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Instructions Through Vector-Extensions.html#Vector%20Extensions
Built-in Functions
Other built-in functions | Most http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
provided by GCC Other-Builtins.html#Other%20Builtins
Built-in Functions No http://gce.gnu.org/onlinedocs/gec-3.2/gec/
Specific to Particular Target-Builtins.html#Target%20Builtins
Target Machines
Pragmas Accepted by No http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
GCC Pragmas.html#Pragmas
Unnamed struct/union Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
fields within Unnamed-Fields.html#Unnamed%20Fields
structs/unions
Minimum and Maximum | Yes http://gce.gnu.org/onlinedocs/gec-3.2/gec/
operators in C++ Min-and-Max.html#Min%?20and%20Max
When is a Volatile No http://gce.gnu.org/onlinedocs/gec-3.2.1/gec/
Object Accessed? Volatiles.html#Volatiles
Restricting Pointer Yes http://gce.gnu.org/onlinedocs/gec-3.2.1/gec/
Aliasing Restricted-Pointers.html#Restricted%20Pointers
Vague Linkage Yes http://gce.gnu.org/onlinedocs/gec-3.2.1/gec/
Vague-Linkage.html#Vague%20Linkage
Declarations and No http://gce.gnu.org/onlinedocs/gec-3.2.1/gec/
Definitions in One C---Interface.html#C++%20Interface
Header
Where's the Template? extern http://gce.gnu.org/onlinedocs/gec-3.2.1/gec/
template Template-
supported Instantiation.html#Template%20Instantiation
Extracting the function | No http://gcc.gnu.org/onlinedocs/gec-3.2.1/gec/
pointer from a bound Bound-member-
pointer to member functions.html#Bound%20member%?20functions
function
C++-Specific Variable, | Yes http://gcc.gnu.org/onlinedocs/gec-3.2.1/gec/

C---Attributes. html#C++%20Attributes

70

gec* Compatibility

gcc Language Intel GNU Description and Examples
Extension Support
Java Exceptions No http://gcc.gnu.org/onlinedocs/gec-3.2.1/gec/

Java-Exceptions.html#Java%20Exceptions

Deprecated Features No http://gcc.gnu.org/onlinedocs/gec-3.2.1/gec/
Deprecated-Features.html#Deprecated%20Features

Backwards No http://gce.gnu.org/onlinedocs/gec-3.2.1/gec/
Compatibility Backwards-
Compatibility.html#Backwards%20Compatibility

]
—4 Note

The Intel C++ Compiler supports gec*-style inline ASM if the assembler code uses AT&T*
System V/386 syntax, as defined in the gcc documentation at:
http://www.gnu.org/manual/gas/html_chapter/as_16.html

gcc* Interoperability

C++ compilers are interoperable if object files and libraries generated by one compiler can be
linked with object files and libraries generated by the second compiler, and the resulting
executable runs successfully. The Intel® C++ Compiler 8.0 has made significant improvements
towards interoperability and compatibility with the GNU gcc* compiler. This section describes
new interoperability options.

See gcc Compatibility for a detailed list of compatibility features.

Interoperability Compiler Options
The Intel® C++ Compiler options that affect gcc interoperability include:
e -cxxlib-gcc
e -gcc-nanme
e -gcc-version
-cxxlib-gcc option

The - cxx| i b- gcc option lets you to build your applications using the C++ libraries and header
files included with the gcc compiler. They include:

e | bstdc++ standard C++ header files
e |ibstdc++ standard C++ library
* |ibgcc C++ language support.

When you compile and link your application using the - cxx| i b- gcc option, the resulting C++
object files, libraries, and executables can interoperate with C++ object files, libraries, and
executables generated by gcc 3.2. This means that third-party C++ libraries built with gec 3.2 will
work with C++ code generated by the Intel Compiler 8.0.

The - cxxl i b- gcc option can only be used on Linux distributions that include gcc 3.2. This is
required for C++ ABI conformance.

71

Intel® C++ Compiler for Linux* Systems User's Guide

By default, the Intel C++ Compiler uses headers and libraries included with the product. If you are
linking with code compiled with g++, which was compiled against gnu C++ headers, then
differences in the headers might cause incompatibilities that result in run-time errors.

If you build one shared library against the Intel C++ libraries, build a second shared library against
the gnu C++ libraries, and use both libraries in a single application, you will have two C++ run-
time libraries in use. Since the application might use symbols from both libraries, the following
problems may occur:

* partially initialized libraries

* lost | / Ooperations from data put in unaccessed buffers

» other strange results, such as jumbled output

The Intel C++ Compiler does not support more than one run-time library in one application.

& Warning

If you successfully compile your application using more than one run-time library, the resulting
program will likely be very unstable, especially when new code is linked against the shared
libraries.

You should use the - cxx| i b- gcc option if your application includes source files generated by
g++ and source files generated by the Intel C++ Compiler. This option directs the Intel compiler to
use the g++ header and library files to build one set of run-time libraries. As a result, your
program should run correctly.

-gcc-name option

The - gcc- name=nane option, used with - cxx| i b- gcc, lets you specify the location of
g++* if the compiler cannot locate the gcc C++ libraries. Use this option when referencing a non-
standard gcc installation.

-gcc-version

The - gcc- ver si on=nnn option provides compatible behavior with gcc, where nnn indicates
the gec version. This version of the Intel compiler supports - gcc- ver si on=320 (ON by
default).

Default Libraries and Headers

The - cxxl i b-i cc option directs the Intel compiler to use the C++ run-time libraries and C++
header files included with the Intel compiler. They include:

e |libcprt s standard C++ headers
 |ibcprts standard C++ library
* libcxaandl i bunwi nd C++ language support

The - cxxl i b-i cc option is ON by default and can be used with any supported Linux
distribution. See Release Notes.

72

gec* Compatibility

Summary of Corresponding Libraries and Headers

Intel Library/Header | gcc Library/Header

libcprts I'i bstdc++

l'ibcxallibunwind|libgcc

gcc Predefined Macros

The Intel C++ Compiler 8.0 includes new predefined macros also supported by gcc:
« _ _GNUC _
e _ _GNUC_ M NOR __
e __ GNUC _PATCHLEVEL__

You can specify the - n0- gcc option if you do not want these macros defined. If you need gcc
interoperability (- cxx| i b- gcc), do not use the - no- gcc compiler option.

See also GNU Environment Variables.

73

Intel® C++ Compiler for Linux* Systems User's Guide

gcc Built-in Functions

This version of the Intel® C++ compiler supports the following gce built-in functions:

__builtin_abs
__builtin_| abs
__builtin_cos
__builtin_cosf
__builtin_fabs
__builtin_fabsf
builtin_mencnp
bui l ti n_mentpy
__builtin_sin
__builtin_sinf
__builtin_sqgrt
__builtin_sqgrtf
__builtin_strcnp
__builtin_strlen
__builtin_strncnp
builtin_abort
builtin_prefetch
__builtin_constant _p
__builtin_printf
__builtin fprintf
__builtin_fscanf
__builtin_scanf
__builtin_fputs
__builtin_nmenset
builtin_strcat
builtin_strcpy
__builtin_strncpy
__builtin_exit
__builtin_strchr
__builtin_strspn
__builtin_strcspn
__builtin_strstr
__builtin_strpbrk
builtin_strrchr
builtin_strncat
__builtin_alloca
__builtin_ffs
__builtin_index
__builtin_rindex
__builtin_bcnp
__builtin_bzero
__builtin_sinl
builtin_cosl
builtin_sqrt
__builtin_fabs
__builtin_frame_address (I A-32 only)
builtin_return_address (1A-32 only)

74

gec* Compatibility

gcc Function Attributes

This version of the Intel® C++ Compiler supports the following gce function attributes:
e noi nline - prevents a function from being inlined
e always_i nl i ne - inlines the function even if no optimization is specified

e used - code must be emitted for the function even if the function is not referenced

Example
int round_sqgrt(int) _ attribute ((always_inline));

In this example, the function r ound_sqrt () is inlined even if no optimization is specified.

75

L anguage Conformance

Conformance Options

Option Description
- ansi Equivalent to GNU* ANSI
-strict_ansi Strict ANSI conformance dialect

-ansi _alias[-] |-ansi _ali as directs the compiler to assume the following:

e arrays are not accessed out of bounds.

e pointers are not cast to non-pointer types, and vice-versa.

» references to objects of two different scalar types cannot alias.
type f | oat , or an object of type f | oat cannot alias with an
object of type doubl e.

If your program satisfies the above conditions, setting the -

ansi _al i as flag will help the compiler better optimize the program.
However, if your program does not satisfy one of the above conditions,
the - ansi _al i as flag may lead the compiler to generate incorrect
code.

For example, an object of type i Nt cannot alias with an object of

Conformance to the C Standard
You can set the Intel® C++ Compiler to accept either
* ANSI conformance equivalent to GNU* ANSI with the - ansi option, or

» Strict ANSI conformance dialect with the - St ri ct _ansi option

The compiler is set by default to accept extensions and not be limited to the ANSI/ISO standard.

Understanding the ANSI/ISO Standard C Dialect

The Intel C++ Compiler provides conformance to the ANSI/ISO standard for C language
compilation (ISO/IEC 9899:1990). This standard requires that conforming C compilers accept
minimum translation limits. This compiler exceeds all of the ANSI/ISO requirements for
minimum translation limits.

76

Language Conformance

Macros Included with the Compiler

The ANSI/ISO standard for C language requires that certain predefined macros be supplied with
conforming compilers. The following table lists the macros that the Intel C++ Compiler supplies
in accordance with this standard:

The compiler provides predefined macros in addition to the predefined macros required by the

standard.
Macro Description
__cpluspl us | The name __cpl uspl us is defined when compiling a C++ translation

unit.

__DATE__ The date of compilation as a string literal in the form Mim dd yyyy.
__FILE _ A string literal representing the name of the file being compiled.
__LINE__ The current line number as a decimal constant.
__STDC__ The name ___STDC__ is defined when compiling a C translation unit.
__TIME__ The time of compilation. As a string literal in the form hh: nm ss.

C99 Support

The following C99 features are supported in this version of the Intel C++ Compiler when using
the - 99 option:

» restricted pointers (r est ri ct keyword, available with - r estri ct). See Note below.
* variable-length Arrays

» flexible array members

* complex number support (_Conpl ex keyword)

* hexadecimal floating-point constants

e compound literals

* designated initializers

* mixed declarations and code

* macros with a variable number of arguments

* inline functions (i nl i ne keyword)

* Dboolean type (_Bool keyword)

B Note

The - restri ct option enables the recognition of the r est ri ct keyword as defined by the ANSI
standard. By qualifying a pointer with the r est ri ct keyword, the user asserts that an object
accessed via the pointer is only accessed via that pointer in the given scope. It is the user’s
responsibility to use the r est ri ct keyword only when this assertion is true. In these cases, the use
ofrestri ct will have no effect on program correctness, but may allow better optimization.

71

Intel® C++ Compiler for Linux* Systems User's Guide

These features are not supported:
 #pragma STDC FP_CONTRACT
 #pragma STDC FENV_ACCESS
* #pragma STDC CX_LI M TED_RANGE

| ong doubl e (128-bit representations)

Conformance to the C++ Standard

The Intel® C++ Compiler conforms to the ANSI/ISO standard (ISO/IEC 14882:1998) for the C++
language, however, the expor t keyword for templates is not implemented.

78

Compiler Optimizations

Optimization Levels

This section discusses the command-line options - Q0, - OL, - @2, and - O3. The - Q0 option
disables optimizations. Each of the other three turns on several compiler capabilities. To specify
one of these optimizations, take into consideration the nature and structure of your application as
indicated in the more detailed description of the options. In general terms - OL, - O2, and - O3
optimize as follows:

e - Ol -- code size and locality
-2 -- code speed; this is the default option
* - (B -- enables - O2 with more aggressive optimizations.

These options behave similarly on IA-32 and Itanium® architectures, with some specifics that are
detailed in the sections that follow.

Setting Optimization Levels

The following table details the effects of the - OO0, - OL, - O2, - O3, and - f ast options. The table
first describes the characteristics shared by both IA-32 and Itanium® architectures and then
explicitly describes the specifics (if any) of the - On options’ behavior on each architecture.

Option | Effect

-0 Disables optimizations.

-01 Optimizes to favor code size and code locality. Disables loop unrolling. May
improve performance for applications with very large code size, any branches, and
execution time not dominated by code within loops. In most cases, - O2 is
recommended over - OL.

I A-32 systems: Disables intrinsics inlining to reduce code size.

Itanium-based systems: Disables software pipelining and global code scheduling.

- 2, - O | ON by default. Optimizes for code speed. This is the generally recommended
optimization level.
Itanium-based systems: Enables software pipelining.

-8 Enables - O2 optimizations and more aggressive optimizations such as loop and
memory access transformations. The - C3 optimizations may slow down code in
some cases compared to - O2 optimizations. Recommended for applications that
have loops that heavily use floating-point calculations and process large data sets.
IA-32 systems: In conjunction with - ax{ K| W N| B| P} and - x{ K| W N| B| P}
options, this option causes the compiler to perform more aggressive data
dependency analysis than for - Q2. This may result in longer compilation times.

79

Intel® C++ Compiler for Linux* Systems User's Guide

Option | Effect

-fast | The-fast option enhances execution speed across the entire program by
including the following options that can improve run-time performance:

¢ - (B (maximum speed and high-level optimizations)
* -ipo (enables interprocedural optimizations across files)

e -static (prevents linking with shared libraries)

To override one of the options set by - f ast , specify that option after the - f ast
option on the command line. The options set by - f ast may change from release to
release.

To target - f ast optimizations for a specific processor, use one of the - X options.
For example:

pronpt >i cpc -fast -xWsource_file.cpp

Restricting Optimizations

The following options restrict or preclude the compiler's ability to optimize your program:

Option Description
-0 Disables optimizations. Enables the - f p option.
- Restricts optimizations that cause some minor loss or gain of precision in

floating-point arithmetic to maintain a declared level of precision and to
ensure that floating-point arithmetic more nearly conforms to the ANSI
and IEEE*standards.

-g Specifying the - g option turns off the default - O2 option and makes -
Q0 the default unless - OL, - O2, or - O3 is explicitly specified in the
command line together with - g.

-nol i b_i nl'i ne | Disables inline expansion of intrinsic functions.

BNote

You can turn off all optimizations for specific functions by using #pr agma opti m ze. In the
following example, all optimization is turned off for function f 0o() :

#pragma optim ze("", off)
foo()({

Valid second arguments for #pr agnma opti m ze are "on" or "of f ." With the "on" argument,
f oo() is compiled with the same optimization as the rest of the program. The compiler ignores
first argument values.

80

Compiler Optimizations

Floating-point Optimizations
Floating-point Arithmetic Precision
Options for 1A-32 and Itanium®-based Systems

-mp Option

The - np option restricts optimization to maintain declared precision and to ensure that floating-
point arithmetic conforms more closely to the ANSI and IEEE standards. For most programs,
specifying this option adversely affects performance. If you are not sure whether your application
needs this option, try compiling and running your program both with and without it to evaluate the
effects on both performance and precision. Specifying the - mp option has the following effects on
program compilation:

user variables declared as floating-point types are not assigned to registers.

whenever an expression is spilled (moved from a register to memory), it is spilled as 80 bits
(extended precision), not 64 bits (double precision).

floating-point arithmetic comparisons conform to the IEEE 754 specification except for NaN
behavior.

the exact operations specified in the code are performed. For example, division is never
changed to multiplication by the reciprocal.

the compiler performs floating-point operations in the order specified without reassociation.

the compiler does not perform the constant-folding optimization on floating-point values.
Constant folding also eliminates any multiplication by 1, division by 1, and addition or
subtraction of 0. For example, code that adds 0.0 to a number is executed exactly as written.
Compile-time floating-point arithmetic is not performed to ensure that floating-point
exceptions are also maintained.

floating-point operations conform to ANSI C. When assignments to type f | oat and
doubl e are made, the precision is rounded from 80 bits (extended) down to 32 bits (float)
or 64 bits (double). When you do not specify - np, the extra bits of precision are not
always rounded before the variable is reused.

sets the - nol i b_i nl i ne option, which disables inline functions expansion.

-mp1 Option

Use the - np1 option to improve floating-point precision. - Mpl disables fewer optimizations and
has less impact on performance than - np.

Options for 1A-32 Only

& Caution

A change of the default precision control or rounding mode (for example, by using the - pc32
flag or by user intervention) may affect the results returned by some of the mathematical
functions.

-long_double Option

Use - | ong_doubl e to change the size of the long double type to 80 bits. The Intel compiler's
default | ong doubl e type is 64 bits in size, the same as the doubl e type. This option
introduces a number of incompatibilities with other files compiled without this option and with
calls to library routines. Therefore, Intel recommends that the use of | ong doubl e variables be
local to a single file when you compile with this option.

81

Intel® C++ Compiler for Linux* Systems User's Guide

-prec_div Option

With some optimizations, such as - XK and - XW the Intel® C++ Compiler changes floating-point
division computations into multiplication by the reciprocal of the denominator. For example, A/B
is computed as A x (1/B) to improve the speed of the computation. However, for values of B
greater than 2'*°, the value of 1/B is "flushed" (changed) to 0. When it is important to maintain the
value of 1/B, use - pr ec_di v to disable the floating-point division-to-multiplication
optimization. The result of - pr ec_di Vv is greater accuracy with some loss of performance.

-pcn Option

Use the - pcn option to enable floating-point significand precision control. Some floating-point
algorithms are sensitive to the accuracy of the significand or fractional part of the floating-point
value. For example, iterative operations like division and finding the square root can run faster if
you lower the precision with the - pcn option. Set n to one of the following values to round the
significand to the indicated number of bits:

* - pc32: 24 bits (single precision) -- See Caution statement above.
e -pc64: 53 bits (single precision)
* - pc80: 64 bits (single precision) -- Default

The default value for n is 80, indicating double precision. This option allows full optimization.
Using this option does not have the negative performance impact of using the - Op option because
only the fractional part of the floating-point value is affected. The range of the exponent is not
affected. The - pcn option causes the compiler to change the floating point precision control
when the mai n() function is compiled. The program that uses - pcn must use mai n() as its
entry point, and the file containing mai n() must be compiled with - pcn.

-rcd Option

The Intel compiler uses the - r cd option to improve the performance of code that requires
floating-point-to-integer conversions. The optimization is obtained by controlling the change of
the rounding mode. The system default floating point rounding mode is round-to-nearest. This
means that values are rounded during floating point calculations. However, the C language
requires floating point values to be truncated when a conversion to an integer is involved. To do
this, the compiler must change the rounding mode to truncation before each floating-point-to-
integer conversion and change it back afterwards. The - r cd option disables the change to
truncation of the rounding mode for all floating point calculations, including floating point-to-
integer conversions. Turning on this option can improve performance, but floating point
conversions to integer will not conform to C semantics.

-fp_port Option

The - f p_port option rounds floating-point results at assignments and casts. An impact on speed
may result.

-fpstkchk Option

When a function call returns a floating-point value, the return value should be placed at the top of
the FP stack. If the return value is unused, the compiler pops the value off the stack to keep the FP
stack in the correct state. However, if the application leaves out the function's prototype or
incorrectly prototypes the function, then the return value may remain on the stack. This may result
in the FP stack filling up and eventually overflowing.

Generally, when the FP stack overflows, a NaN value is put into FP calculations, and the
program's results differ. Unfortunately, the overflow point can be far away from the point of the
actual bug. The - f pchkst k option places code that would access violate immediately after an
incorrect call occurred, thus making it easier to locate these issues.

82

Compiler Optimizations

Floating-point Arithmetic Options for Itanium(R)-based Systems

The following options enable you to control the compiler optimizations for floating-point
computations on Itanium®-based systems:

e -ftz[-]

e -IPF_fma[-]

e -IPF_fp_specul ati onnmode

e -IPF_flIt _eval nethodO

e -IPF_fltacc[-] (Default:-1 PF_fltacc-)
Flush Denormal Results to Zero

Use the - f t z option to flush denormal results to zero.

Contraction of FP Multiply and Add/Subtract Operations

-1 PF_fma[-] enables [disables] the contraction of floating-point multiply and add/subtract
operations into a single operation. Unless - np is specified, the compiler contracts these operations
whenever possible. The - mp option disables the contractions. Use - | PF_f ma and - | PF_f ma-
to override the default compiler behavior. For example, a combination of - np and - | PF_f ma
enables the compiler to contract operations (on Itanium®-based systems only):

pronmpt >icpc -np -IPF_fma prog. cpp
FP Speculation

-1 PF_f p_specul at i onnbde sets the compiler to speculate on floating-point operations in
one of the following nmodes:

» fast: sets the compiler to speculate on floating-point operations
» saf e: enables the compiler to speculate on floating-point operations only when it is safe
» strict: disables the speculation of floating-point operations.
e of f: disables the speculation on floating-point operations.
):)] Note
-1 PF_f p_specul ati onsaf e is the default when - Q0 is specified.
FP Operations Evaluation

-1 PF_flt_eval _net hodO directs the compiler to evaluate the expressions involving floating-
point operands in the precision indicated by the variable types declared in the program.

Controlling Accuracy of the FP Results

-1 PF_fltacc[-] enables [disables] optimizations that affect floating-point accuracy. By
default (- | PF_f | t acc-) the compiler may apply optimizations that reduce floating-point
accuracy. You may use - | PF_f | t acc or - np to improve floating-point accuracy, but at the cost
of disabling some optimizations.

83

Intel® C++ Compiler for Linux* Systems User's Guide

Optimizing for Specific Processors

Processor Optimization for IA-32 only

The -t pp{ 5| 6] 7} options optimize your application's performance for a specific Intel
processor. The resulting binary will also run on the other processors listed in the table below. The
Intel® C++ Compiler includes gec*-compatible versions of the - t pp options. These options are
listed in the gcc* Version column.

Option | gcc* Version Optimizes for

-tpp5 | -ncpu=pentium Intel® Pentium® processors

-t pp6 | - mcpu=penti unpro | Intel Pentium Pro, Intel Pentium II, and Intel Pentium 111
processors

-tpp7 |-ncpu=pentiunmd Intel Pentium 4 processors, Intel Pentium M processors,
and Intel Pentium 4 processor with Streaming SIMD
Extensions 3 (SSE3)

BNote

The - t pp7 option is ON by default.
Example

The invocations listed below all result in a compiled binary optimized for Pentium 4. The same
binary will also run on Pentium, Pentium Pro, Pentium II, and Pentium III processors.

pronpt >i cpc prog. cpp
pronpt >i cpc -t pp7 prog.cpp
pronpt >i cpc - ncpu=pentiumd prog.cpp
Processor Optimization (Itanium®-based Systems only)

The - t pp{ 1| 2} options optimize your application's performance for a specific Intel® Itanium®

processor. The resulting binary will also run on the processors listed in the table below. The Intel®
C++ Compiler includes gec*-compatible versions of the - t pp options. These options are listed in
the gcc* Version column.

Option | gcc* Version Optimizes for

-tppl | -ncpu=itani um | Itanium processors

-tpp2 | -ncpu=itani un® | Itanium 2 processors

BNote

The - t pp2 option is ON by default.

84

Compiler Optimizations

Example

The invocations listed below all result in a compiled binary optimized for the Intel Itanium 2
processor. The same binary will also run on Intel Itanium processors.

pronpt >i cpc prog. cpp

pronpt >i cpc -tpp2 prog.cpp

pronpt >i cpc -ntpu=itani un2 prog.cpp
Processor-specific Optimization (IA-32 only)

The - x{ K| W N| B|] P} options target your program to run on a specific Intel processor. The
resulting code might contain unconditional use of features that are not supported on other
processors.

Option | Specific Optimization for...

-xK Intel® Pentium® III and compatible Intel processors.

- XW Intel Pentium 4 and compatible Intel processors.

-xN Intel Pentium 4 and compatible Intel processors. Programs, where the function
mai n() is compiled with this option, will detect non-compatible processors and
generate an error message during execution. This option also enables new
optimizations in addition to Intel processor-specific optimizations.

-xB Intel Pentium M and compatible Intel processors. Programs, where the function
mai n() is compiled with this option, will detect non-compatible processors and
generate an error message during execution. This option also enables new
optimizations in addition to Intel processor-specific optimizations.

-xP Intel Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3). Programs,
where the function mai n() is compiled with this option, will detect non-
compatible processors and generate an error message during execution. This option
also enables new optimizations in addition to Intel processor-specific optimizations.

To execute a program on x86 processors not provided by Intel Corporation, do not specify the -
x{ K| W N| B| P} option.

Example

The invocation below compiles pr 0g. cpp for Intel Pentium 4 and compatible processors. The
resulting binary might not execute correctly on Pentium, Pentium Pro, Pentium II, Pentium III, or
Pentium with MMX technology processors, or on x86 processors not provided by Intel
corporation.

pronpt >i cpc - XW prog. cpp

& Caution

If a program compiled with - X{ K| W N| B| P} is executed on a non-compatible processor, it
might fail with an illegal instruction exception, or display other unexpected behavior. Executing
programs compiled with - XN, - XB, or - XP on unsupported processors (see table above) will
display the following run-time error:

85

Intel® C++ Compiler for Linux* Systems User's Guide

Fatal Error : This programwas not built to run on the processor
in your system

Automatic Processor-specific Optimizations (IA-32 only)

The - ax{ K| W N| B| P} options direct the compiler to find opportunities to generate separate
versions of functions that take advantage of features that are specific to the specified Intel
processor. If the compiler finds such an opportunity, it first checks whether generating a
processor-specific version of a function is likely to result in a performance gain. If this is the case,
the compiler generates both a processor-specific version of a function and a generic version of the
function. The generic version will run on any IA-32 processor.

At run time, one of the versions is chosen to execute, depending on the Intel processor in use. In
this way, the program can benefit from performance gains on more advanced Intel processors,
while still working properly on older IA-32 processors.

The disadvantages of using - ax{ K| W N| B| P} are:

* The size of the compiled binary increases because it contains processor-specific versions of
some of the code, as well as a generic version of the code.

* Performance is affected slightly by the run-time checks to determine which code to use.

B Note

Applications that you compile with this option will execute on any IA-32 processor. If you specify
both the - X and - ax options, the - X option forces the generic code to execute only on processors
compatible with the processor type specified by the - X option.

Option | Optimizes Your Code for...

-axK | Intel Pentium III and compatible Intel processors.

-axW | Intel Pentium 4 and compatible Intel processors.

-axN | Intel Pentium 4 and compatible Intel processors. This option also enables new
optimizations in addition to Intel processor specific-optimizations.

-axB | Intel Pentium M and compatible Intel processors. This option also enables new
optimizations in addition to Intel processor specific-optimizations.

-axP | Intel Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3). This option
also enables new optimizations in addition to Intel processor specific-optimizations.

Example
The compilation below will generate a single executable that includes:
e ageneric version for use on any [A-32 processor

* aversion optimized for Intel Pentium III processors, as long as there is a likely performance
benefit

* aversion optimized for Intel Pentium 4 processors, as long as there is a likely performance
benefit

pronpt >i cpc - axKW pr og. cpp

86

Compiler Optimizations

Manual CPU Dispatch (IA-32 only)

Use __decl spec(cpu_specific) and __decl spec(cpu_di spat ch) in your code to
generate instructions specific to the Intel processor on which the application is running, and also to
execute correctly on other IA-32 processors.

Fl

~—# Note

Manual CPU dispatch cannot be used to recognize Intel® Itanium® processors. The syntax of
these extended attributes is as follows:

e cpu_specific(cpuid)
e cpu_dispatch(cpuid-list)

The values for cpui d and cpui d- | i st are shown in the tables below:

Processor Values for cpui d
x86 processors not provided by Intel Corporation generic

Intel® Pentium® processors pentium

Intel Pentium processors with MMX™ Technology pentium nmmx
Intel Pentium Pro processors pentiumpro
Intel Pentium II processors pentiumii

Intel Pentium III processors pentiumiii
Intel Pentium III (exclude xmm registers) pentium.iii_no_xnmregs
Intel Pentium 4 processors pentium 4

Intel Pentium M processors pentiumm

Intel Pentium 4 processor with Streaming SIMD future_cpu_10
Extensions 3 (SSE3).

Values for cpui d- | i st

cpuid

cpuid-list, cpuid

The attributes are not case sensitive. The body of a function declared with
__decl spec(cpu_di spat ch) must be empty, and is referred to as a stub (an empty-bodied
function).

87

Intel® C++ Compiler for Linux* Systems User's Guide

Use the following guidelines to implement automatic processor dispatch support:

1.

88

Stub for cpu_di spat ch must haveacpui d defined in cpu_speci fi ¢ elsewhere
If the cpu_di spat ch stub for a function f contains the cpui d p, then a

cpu_speci fi c definition of f with cpui d p must appear somewhere in the program;
otherwise an unresolved external error is reported. A cpu_speci f i ¢ function definition
need not appear in the same translation unit as the corresponding cpu_di spat ch stub,
unless the cpu_speci fi ¢ function is declared St at i ¢. The inline attribute is disabled
for all cpu_speci fi ¢ and cpu_di spat ch functions.

Must have a stub for cpu_speci fi ¢ function

If a function f is defined as__decl spec(cpu_specific(p)),thena

cpu_di spat ch stub must also appear for f within the program; and p must be in the
cpui d- i st of that stub; otherwise, that cpu_speci f i ¢ definition cannot be called nor
generate an error condition.

Overrides command line settings

When a cpu_di spat ch stub is compiled, its body is replaced with code that determines
the processor on which the program is running, then dispatches the "best" cpu_speci fi c
implementation available as defined by the cpui d- 1 i st. The cpu_speci fi ¢ function
optimizes to the specified Intel processor regardless of command-line option settings.

Compiler Optimizations

Processor Dispatch Example

Here is an example of how these features can be used:

#i ncl ude <mm ntrin. h>
/* Pentium processor function does not use intrinsics to add
two arrays. */

__decl spec(cpu_specific(pentium)
void array_sunm(int *r, int *a, int *b,size_t |)

for (; length > 0; I|--)
*resul t++ = *a++ + *b++;

}

/* 1mplenentation for a Pentium processor with MW technol ogy
uses

an MW instruction intrinsic to add four elenents

si mul t aneously. */

__decl spec(cpu_specific(pentium MVX))
void array_sun(int *r,int const *a, int *b, size t I|)

n64 *nmx_result = (__nB4 *)result;

__nB4 const *nmmx_a = (__nmB4 const *)a

__nB4 const *mmx_b = (__nmb64 const *)b;

for (; length > 3; length -= 4)

*nmx_result++ = _nmm add_pi 16(*nmmx_a++, *nmx_b++) ;

/* The follow ng code, which takes care of excess el enents,
is not

needed if the array sizes passed are known to be nultiples
of four. */

result = (unsigned short *)mmx_r;
a = (unsigned short const *)mmx_a;
b = (unsigned short const *)nmr_b;
for (; length > 0; I|--)

*resul t++ = *a++ + *b++;

}

__decl spec(cpu_di spat ch(pentium pentium MVX))
void array_sum (int *r,int const *a, int *b, size t |))

{

/* Enmpty function body informs the conpiler to generate the
CPU-di spatch function listed in the cpu_dispatch clause. */

}

89

Intel® C++ Compiler for Linux* Systems User's Guide

Processor-specific Runtime Checks, IA-32 Systems

The Intel® C++ Compiler optimizations take effect at run time. For IA-32 systems, the compiler
enhances processor-specific optimizations by inserting a code segment in the program that
performs the run-time checks described below.

Check for Supported Processor with -xN, -xB, or -xP

To prevent execution errors, the compiler inserts code in the program to check for proper
processor usage. Programs compiled with options - XN, - XB, or - XP will check at run time
whether they are being executed on the Intel® Pentium® 4 processor, Intel Pentium M processor,
or the Intel Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3), respectively, or a
compatible Intel processor. If the program is not executed on one of these processors, the program
terminates with an error.

Example

To optimize the program pr og. cpp for the Intel Pentium 4 processor with Streaming SIMD
Extensions 3 (SSE3), issue the following command:

pronpt >i cpc - xP prog. cpp

The resulting executable aborts if it is executed on a processor that does not support the Intel
Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3), such as the Intel Pentium III or
Intel Pentium 4 processor.

If you intend to run your programs on multiple IA-32 processors, do not use the - X{ } options that
optimize for processor-specific features; consider using - ax{ } to attain processor specific
performance and portability among different processors.

Setting FTZ and DAZ Flags

Previously, the values of the flags flush-to-zero (FTZ) and denormals-as-zero (DAZ) for IA-32
processors were off by default. However, even at the cost of losing IEEE compliance, turning
these flags on significantly increases the performance of programs with denormal floating-point
values in the gradual underflow mode run on the most recent IA-32 processors. Hence, for the
Intel Pentium III, Pentium 4, Pentium M, Intel Pentium 4 processor with Streaming SIMD
Extensions 3 (SSE3), and compatible IA-32 processors, the compiler's default behavior is to turn
these flags on. The compiler inserts code in the program to perform a run-time check for the
processor on which the program runs to verify it is one of the afore-listed Intel processors.

Examples
* Executing a program on a Pentium III processor enables FTZ, but not DAZ.

* Executing a program on an Intel Pentium M processor or Intel Pentium 4 processor with
Streaming SIMD Extensions 3 (SSE3) enables both FTZ and DAZ.

These flags are only turned on by Intel processors that have been validated to support them.
For non-Intel processors, you can set the flags manually with the following macros:

Enable FTZ: _MV SET_FLUSH ZERO MODE(_MMV FLUSH_ZERO _ON)

Enable DAZ: _MM SET_DENORMALS_ZERO MODE(_MM DENORMALS_ZERO ON)
The prototypes for these macros are in Xxmmi ntri n. h (FTZ) and pnmi ntri n. h (DAZ).

90

Compiler Optimizations

Interprocedural Optimizations

Use -i p and - i po to enable interprocedural optimizations (IPO), which allow the compiler to
analyze your code to determine where to apply the optimizations listed in tables that follow.

IA-32 and Itanium®-based Applications

Optimization Affected Aspect of Program

Inline function Calls, jumps, branches, and loops

expansion

Interprocedural Arguments, global variables, and return values

constant propagation

Monitoring module- Further optimizations, loop invariant code
level static variables

Dead code elimination | Code size

Propagation of function | Call deletion and call movement. Also enables knowledge of
characteristics functions that will not return, whether exceptions are thrown, the
stack needs alignment, or alignment of arguments.

Multifile optimization | Affects the same aspects as - i p, but across multiple files

IA-32 applications only

Optimization Affected Aspect of Program

Passing arguments in registers | Calls, register usage

Inline function expansion is one of the main optimizations performed by the interprocedural
optimizer. For function calls that the compiler believes are frequently executed, the compiler
might decide to replace the instructions of the call with code for the function itself (inline the call).

With - i p, the compiler performs inline function expansion for calls to functions defined within
the current source file. However, when you use - i po to specify multifile IPO, the compiler
performs inline function expansion for calls to functions defined in separate files. For this reason,
it is important to compile the entire application or multiple, related source files together when you
specify - i po.

The IPO optimizations are disabled by default.

91

Intel® C++ Compiler for Linux* Systems User's Guide

Interprocedural Optimization Options

Option

Description

-|p

Enables interprocedural optimizations for single file compilation.

-ip_no_inlining

Disables inlining that would result from the - i p interprocedural
optimization, but has no effect on other interprocedural
optimizations.

-ipo Enables interprocedural optimizations across files.

-ipo_c Generates a multifile object file that can be used in further link
steps.

-1 po_obj Forces the compiler to create real object files when used with -
i po.

-ipo_S Generates a multifile assemblable file named i po_out . asm

that can be used in further link steps.

-inline_debug_ info

Preserve the source position of inlined code instead of assigning
the call-site source position to inlined code.

-nolib_inline

Disables inline expansion of standard library functions.

Using -ip or -ipo with -Qoption Specifiers

Use - Qopt i on with the applicable keywords to select particular inline expansions and loop
optimizations. The option must be entered with a - i p or - i po specification, as follows:

pronpt >i cpc -ip -Qoption,tool, opts

where t 0ol is C++ (c) and opt s are - Qopt i on specifiers (see below).

-option Specifiers

If you specify - i p or - i po without any - Qopt i on qualification, the compiler

e expands functions in line

* propagates constant arguments

* passes arguments in registers

* monitors function-level static variables

92

Compiler Optimizations

You can refine interprocedural optimizations by using the following - Qopt i on specifiers. To
have an effect, the - Qopt i on option must be entered with either - i p or - i po also specified, as
in this example:

pronmpt>icpc -ip -Qoption,c,ip_specifier

where i p_speci fi er is one of the specifiers described in the table below:

Specifer Description

-ip_args_in_regs=0 Disables the passing of arguments in registers. By
default, external functions can pass arguments in
registers when called locally. Normally, only static
functions can pass arguments in registers, provided
the address of the function is not taken and the
function does not use a variable number of
arguments.

-ip_ninl_max_stats=n Sets the valid max number of intermediate language
statements for a function that is expanded in line.
The number n is a positive integer. The number of
intermediate language statements usually exceeds
the actual number of source language statements.
The default value for n is 230. The compiler uses a
larger limit for user inline functions.

-ip_ninl _mn_stats=n Sets the valid mi n number of intermediate language
statements for a function that is expanded in line.
The number n is a positive integer. The default value
fori p_ninl _mn_statsis:

 TA-32 compiler:i p_ninl _mn_stats=7

e Itanium® compiler:i p_ni nl _m n_stats
=15

-ip_ninl _max_t ot al _st at s=n | Sets the maximum increase in size of a function,
measured in intermediate language statements, due
to inlining. N is a positive integer whose default
value is 2000.

The following command activates procedural and interprocedural optimizations on sour ce. cpp
and sets the maximum increase in the number of intermediate language statements to 5 for each
function:

pronmpt>icpc -ip -Qoption,c,-ip_ninl_nmax_stats=5 source.cpp

93

Intel® C++ Compiler for Linux* Systems User's Guide

Multifile IPO

Multifile IPO obtains potential optimization information from individual program modules of a
multifile program. Using the information, the compiler performs optimizations across modules.

Building a program is divided into two phases -- compilation and linkage. Multifile IPO performs
different work depending on whether the compilation, linkage, or both are performed.

Compilation Phase

As each source file is compiled, multifile IPO stores an intermediate representation (IR) of the
source code in the object file, which includes summary information used for optimization.

By default, the compiler produces "mock" object files during the compilation phase of multifile
IPO. Generating mock files instead of real object files reduces the time spent in the multifile IPO
compilation phase. Each mock object file contains the IR for its corresponding source file, but no
real code or data. These mock objects must be linked using the - i po option or using the xi | d
tool.

F)

~—# Note

Failure to link "mock" objects with - i po or Xi | d will result in linkage errors. There are
situations where mock object files cannot be used. See Compilation with Real Object Files for
more information.

Linkage Phase

When you specify - i po, the compiler is invoked a final time before the linker. The compiler
performs multifile IPO across all object files that have an IR.

f) Note

The compiler does not support multifile TPO for static libraries (. a files). See Compilation with
Real Object Files for more information.

- i po enables the driver and compiler to attempt detecting a whole program automatically. If a
whole program is detected, the interprocedural constant propagation, stack frame alignment, data
layout and padding of common blocks optimizations perform more efficiently, while more dead
functions get deleted. This option is safe.

Compilation with Real Object Files

In certain situations you might need to generate real object files with - i po. To force the compiler
to produce real object files instead of "mock" ones with IPO, you must specify -i po_obj in
addition to - i po.

Use of - i po_obj is necessary under the following conditions:

* The objects produced by the compilation phase of - i po will be placed in a static library
without the use of Xi | d orxi I d -1i b. The compiler does not support multifile IPO for
static libraries, so all static libraries are passed to the linker. Linking with a static library that
contains "mock" object files will result in linkage errors because the objects do not contain
real code or data. Specifying - i po_obj causes the compiler to generate object files that
can be used in static libraries.

e Alternatively, if you create the static library using Xi ar orXi | d -1 i b, then the resulting
static library will work as a normal library.

* The objects produced by the compilation phase of - i po might be linked without the - i po
option and without the use of xi | d.

94

Compiler Optimizations

* You want to generate an assemblable file for each source file (using - S) while compiling
with - i po. If you use - i po with - S, but without - i po_obj , the compiler issues a
warning and an empty assemblable file is produced for each compiled source file.

Implementing the IL Files with Version Numbers

An TPO compilation consists of two parts: the compile phase and the link phase. In the compile
phase, the compiler produces a file containing an intermediate language (IL) version of your code.
In the link phase, the compiler reads the IL and completes the compilation, producing a real object
file or executable.

Generally, different compiler versions produce IL based on different definitions, and therefore
they can be incompatible. The Intel® C++ Compiler assigns a unique version number with each
compiler's IL definition. If a compiler attempts to read IL in a file with a version number other
than its own, the compilation proceeds, but the IL is discarded and not used in the compilation.
The compiler then issues a warning about an incompatible IL.

IL in Objects and Libraries: More Optimizations

The IL produced by the Intel compiler is stored in a special section of the object file. The IL stored
in the object file is then placed in the library. If this library is used in an [PO compilation invoked
with the same compiler that produced the IL for the library, then the compiler can extract the IL
from the library and use it to optimize the program.

Creating a Multifile IPO Executable

This topic describes how to create a multifile IPO executable for compilations targeted for IA-32
and Itanium®-based systems.

If you separately compile and link your source modules with - i po:

1. Compile with - i po as follows:
pronpt>icpc -ipo -c a.cpp b.cpp c.cpp

2. Use the - C option to stop compilation after generating . 0 files. Each object file has the IR
for the corresponding source file. With preceding results, you can now optimize
interprocedurally:
pronpt>icpc -ipo a.o b.o c.o

Multifile IPO is applied only to modules that have an IR, otherwise the object file passes to the
link stage. For efficiency, combine steps 1 and 2:

pronpt >i cpc -ipo a.cpp b.cpp c.cpp

See Using Profile-Guided Optimization: An Example for a description of how to use multifile IPO
with profile information for further optimization.

Creating a Multifile IPO Executable with xild
The Intel linker, Xi | d, performs the following steps:
* invokes the Intel compiler to perform multifile [PO if objects containing | R are found
* invokes the GNU linker, | d, to link the application
The command-line syntax for Xi | d is:
pronpt >xi |l d [<options>] <LINK conmandl i ne>

where:

e [<options>] (optional) may include any gcc linker options or options supported only
by xi | d.

e <LI NK_commandl i ne> is the linker command line containing a set of valid arguments to
[d.

95

Intel® C++ Compiler for Linux* Systems User's Guide

To place the multifile IPO executable ini po_fi | e, use the option - of i | enane, for example:

prompt>xild oipo file a.o b.o c.o

Xi | d calls Intel compiler to perform IPO for objects containing IR and creates a new list of
object(s) to be linked. Then Xi | d calls | d to link the object files that are specified in the new list
and produce i po_fi | e executable specified by the - of i | enane option.

1
<4 Note

The - i po option can reorder object files and linker arguments on the command line. Therefore, if
your program relies on a precise order of arguments on the command line, - i po can affect the

behavior of your program.

Usage Rules

You must use the Intel linker Xi | d to link your application if:

» your source files were compiled with multifile IPO enabled. Multifile IPO is enabled by
specifying the - i po command-line option

* you normally would invoke | d to link your application

The xild Options

The additional options supported by Xi | d may be used to examine the results of multifile IPO.
These options are described in the following table.

Option

Description

-ipo_o[file.s]

Produces assemblable files for the multifile IPO compilation.
You may specify an optional name for the listing file, or a
directory (with the backslash) in which to place the file. The
default listing name is i po_out . s.

-ipo_o[file.O0]

Produces object file for the multifile IPO compilation. You may
specify an optional name for the object file, or a directory (with
the backslash) in which to place the file. The default object file
nameisi po_out. o.

-i po_fcode-asm

Add code bytes to assemblable files

-i po_fsource-asm

Add high-level source code to assemblable files

-i po_fverbose-asm
-i po_fnoverbose-asm

Enable and disable, respectively, inserting comments containing
version and options used in the assemblable file for xi | d

96

Compiler Optimizations

Creating a Library from IPO Objects

Normally, libraries are created using a library manager such as ar . Given a list of objects, the
library manager will insert the objects into a named library to be used in subsequent link steps.

prompt>xiar cru user.a a.o b.o
A library named user . a will be created containing a. 0 and b. 0.

If, however, the objects have been created using - i po - C, then the objects will not contain a
valid object but only the intermediate representation (IR) for that object file. For example:

pronpt >icpc -ipo -c a.cpp b.cpp

will produce a. 0 and b. 0 that only contains IR to be used in a link time compilation. The library
manager will not allow these to be inserted in a library.

In this case you must use the Intel library driver Xi | d - ar . This program will invoke the
compiler on the IR saved in the object file and generate a valid object that can be inserted in a
library.

prompt>xild -lib cru user.a a.o b.o

See Creating a Multifile IPO Executable Using xi | d.
Analyzing the Effects of Multifile IPO

The - i po_c and - i po_S options are useful for analyzing the effects of multifile IPO, or when
experimenting with multifile IPO between modules that do not make up a complete program.

Use the - i po_c option to optimize across files and produce an object file. This option performs
optimizations as described for - i po, but stops prior to the final link stage, leaving an optimized
object file. The default name for this file is i po_out . 0.

Use the - i po_S option to optimize across files and produce an assemblable file. This option
performs optimizations as described for - i po, but stops prior to the final link stage, leaving an
optimized assemblable file. The default name for this file isi po_out . s.

See also Inline Expansion of Functions.

Inline Expansion of Functions
Controlling Inline Expansion of User Functions

The compiler enables you to control the amount of inline function expansion, with the options
shown in the following summary:

-ip_no_inlining |Thisoption is only useful if- i p is also specified. In this case, -

i p_no_i nl i ni ng disables inlining that would result from the -
i p interprocedural optimizations, but has no effect on other
interprocedural optimizations.

-i p_no_pi nli ni ng | Disables partial inlining; can be used if - i p or - i po is also
specified.

97

Intel® C++ Compiler for Linux* Systems User's Guide

Criteria for Inline Function Expansion

Once the criteria are met, the compiler picks the routines whose inline expansion will provide the
greatest benefit to program performance. The inlining heuristics used by the compiler differ, based
on whether or not you use profile-guided optimizations (- pr of _use). When you use profile-
guided optimizations with - i p or - i po, the compiler uses the following heuristics:

e The default heuristic focuses on the most frequently executed call sites, based on the profile
information gathered for the program.

* By default, the compiler will not inline functions with more than 230 intermediate
statements. You can change this value by specifying the option - Qopti on, c, -
i p_ni nl _max_st at s=new_val ue. Note: there is a higher limit for functions declared
by the userasi nlineor__inline.

e The default inline heuristic will stop inlining when direct recursion is detected.

e The default heuristic will always inline very small functions that meet the minimum inline
criteria.

e Default for Itanium®-based applications: i p_ni nl _m n_st at s=15.

e Default for IA-32 applications: i p_ni nl _mi n_st at s=7. This limit can
be modified with the option - Qopti on, c, -
i p_ninl_mn_stats=new val ue.

If you do not use profile-guided optimizations with - i p or - i po, the compiler uses less
aggressive inlining heuristics:

* Inline a function if the inline expansion will not increase the size of the final program.

* Inline a function if it is declared with the i nl i ne or __i nl i ne keywords.

98

Compiler Optimizations

Profile-guided Optimizations

Profile-guided optimizations (PGO) tell the compiler which areas of an application are most
frequently executed. By knowing these areas, the compiler is able to use feedback from a previous
compilation to be more selective in optimizing the application. For example, the use of PGO often
enables the compiler to make better decisions about function inlining, thereby increasing the
effectiveness of interprocedural optimizations.

Instrumented Program

Profile-guided optimization creates an instrumented program from your source code and special
code from the compiler. Each time this instrumented code is executed, the instrumented program
generates a dynamic information file. When you compile a second time, the dynamic information
files are merged into a summary file. Using the profile information in this file, the compiler
attempts to optimize the execution of the most heavily travelled paths in the program.

Unlike other optimizations, such as those used strictly for size or speed, the results of [PO and
PGO vary. This is due to each program having a different profile and different opportunities for
optimizations. The guidelines provided here help you determine if you can benefit by using IPO
and PGO.

Profile-guided Optimizations Methodology

PGO works best for code with many frequently executed branches that are difficult to predict at
compile time. An example is code that is heavy with error-checking in which the error conditions
are false most of the time. The "cold" error-handling code can be placed such that the branch is
rarely mispredicted. Eliminating the interleaving of "hot" and "cold" code improves instruction
cache behavior. For example, the use of PGO often enables the compiler to make better decisions
about function inlining, thereby increasing the effectiveness of interprocedural optimizations.

PGO Phases
The PGO methodology requires three phases:
* Phase 1: Instrumentation compilation and linking with - pr of _gen[x]
e Phase 2: Instrumented execution by running the executable
* Phase 3: Feedback compilation with - pr of _use

A key factor in deciding whether you want to use PGO lies in knowing which sections of your
code are the most heavily used. If the data set provided to your program is very consistent and it
elicits a similar behavior on every execution, then PGO can probably help optimize your program
execution. However, different data sets can elicit different algorithms to be called. This can cause
the behavior of your program to vary from one execution to the next.

In cases where your code behavior differs greatly between executions, PGO may not provide
noticeable benefits. You have to ensure that the benefit of the profile information is worth the
effort required to maintain up-to-date profiles.

When using - pr of _gen[x] with the x qualifier, extra source position is collected which
enables code coverage tools, such as the Intel® C++ Compiler Code-coverage Tool. Without such
tools, - pr of _genx does not provide better optimization and may slow parallel compile times.

99

Intel® C++ Compiler for Linux* Systems User's Guide

Basic PGO Options

Option Description

-prof _gen[x] | Instructs the compiler to produce instrumented code in your object files in
preparation for instrumented execution.

- prof _use Instructs the compiler to produce a profile-optimized executable and
merges available dynamic information (. dyn) files into a pgopt i . dpi
file.

In cases where your code behavior differs greatly between executions, you have to ensure that the
benefit of the profile information is worth the effort required to maintain up-to-date profiles. In the
basic profile-guided optimization, the following options are used in the phases of the PGO:

Generating Instrumented Code

The - pr of _gen[x] option instruments the program for profiling to get the execution count of
each basic block. It is used in Phase 1 of the PGO to instruct the compiler to produce instrumented
code in your object files in preparation for instrumented execution. Parallel make is automatically
supported for - pr of _genx compilations.

Generating a Profile-optimized Executable

The - pr of _use option is used in Phase 3 of the PGO to instruct the compiler to produce a
profile-optimized executable and merges available dynamic-information (. dyn) files into a
pgopti . dpi file.

f)Note

The dynamic-information files are produced in Phase 2 when you run the instrumented executable.

If you perform multiple executions of the instrumented program, - pr of _use merges the
dynamic-information files again and overwrites the previous pgopt i . dpi file.

Disabling Function Splitting (Itanium® Compiler only)

-fnsplit- disables function splitting. Function splitting is enabled by - pr of _use in Phase 3
to improve code locality by splitting routines into different sections: one section to contain the
cold or very infrequently executed code and one section to contain the rest of the code (hot code).

You can use - f nspl i t - to disable function splitting for the following reasons:

* Most importantly, to get improved debugging capability. In the debug symbol table, it is
difficult to represent a split routine, that is, a routine with some of its code in the hot code
section and some of its code in the cold code section.

* The-fnsplit- option disables the splitting within a routine but enables function
grouping, an optimization in which entire routines are placed either in the cold code section
or the hot code section. Function grouping does not degrade debugging capability.

* Another reason can arise when the profile data does not represent the actual program
behavior, that is, when the routine is actually used frequently rather than infrequently.

100

Compiler Optimizations

Example of Profile-guided Optimization
The three basic phases of PGO are:
e Instrumentation Compilation and Linking
* Instrumented Execution
* Feedback Compilation
Instrumentation Compilation and Linking

Use - pr of _gen to produce an executable with instrumented information. Use also the -

pr of _di r option as recommended for most programs, especially if the application includes the
source files located in multiple directories. - pr of _di r ensures that the profile information is
generated in one consistent place. For example:

prompt >i cpc -prof_gen -prof _dir /profdata -c al.cpp a2.cpp a3.cpp
pronpt >icpc al.o a2.0 a3.0

In place of the second command, you could use the linker directly to produce the instrumented
program.

Instrumented Execution

Run your instrumented program with a representative set of data to create a dynamic information
file.

pronpt >./ a. out

The resulting dynamic information file has a unique name and . dyn suffix every time you run
a. 0. The instrumented file helps predict how the program runs with a particular set of data. You
can run the program more than once with different input data.

Feedback Compilation

Compile and link the source files with - pr of _use to use the dynamic information to optimize
your program according to its profile:

pronpt >i cpc -prof _use -ipo al.cpp a2.cpp a3.cpp

Besides the optimization, the compiler produces a pgopt i . dpi file. You typically specify the
default optimizations (- O2) for phase 1, and specify more advanced optimizations with - i po for
phase 3. This example used - Q2 in phase 1 and - @2 - i po in phase 3.

ff—t_) Note

The compiler ignores the - i po options with - pr of _gen[x] . With the x qualifier, extra
information is gathered.

PGO Environment Variables

The table below describes environment values to determine the directory to store dynamic
information files or whether to overwrite pgopt i . dpi . Refer to your operating system
documentation for instructions on how to specify environment values.

101

Intel® C++ Compiler for Linux* Systems User's Guide

Profile-guided Optimization Environment Variables

Variable Description

PROF_DI R Specifies the directory in which dynamic information files are
created. This variable applies to all three phases of the profiling
process.

PROF_NO_CLOBBER | Alters the feedback compilation phase slightly. By default, during the
feedback compilation phase, the compiler merges the data from all
dynamic information files and creates a new pgopt i . dpi file if

. dyn files are newer than an existing pgopt i . dpi file. When this
variable is set, the compiler does not overwrite the existing

pgopti . dpi file. Instead, the compiler issues a warning and you
must remove the pgopt i . dpi file if you want to use additional
dynamic information files.

Using profmerge to Relocate the Source Files

The compiler uses the full path to the source file to look up profile summary information. By
default, this prevents you from:

e using the profile summary file (. dpi) if you move your application sources

* sharing the profile summary file with another user who is building identical application
sources that are located in a different directory

Source Relocation

To enable the movement of application sources, as well as the sharing of profile summary files,
use pr of mer ge with the - src_ol d and - sSr c_newoptions. For example:

pronpt >prof merge -prof _dir <pl> -src_old <p2> -src_new <p3>
where:

e <pl>is the full path to dynamic information file (. dpi).

e <p2>is the old full path to source files.

» <p3>is the new full path to source files.

The above command will read the pgopt i . dpi file. For each function represented in the
pgopt i . dpi file, whose source path begins with the <p2> prefix, pr of mer ge replaces that
prefix with <p3>. The pgopt i . dpi file is updated with the new source path information.

You can execute pr of mer ge more than once on a given pgopt i . dpi file. You may need to do
this if the source files are located in multiple directories. For example:

pronmpt >prof merge -prof _dir -src_old /src/prog_1 -src_new
/src/prog_2

pronpt >prof nerge -prof _dir -src_old /proj_1 -src_new /proj 2

In the values specified for - sSr ¢c_ol d and - sr ¢c_new, uppercase and lowercase characters are
treated as identical. Likewise, forward slash (/) and backward slash (\) characters are treated as
identical.

Because the source relocation feature of pr of mer ge modifies the pgopt i . dpi file, you may
wish to make a backup copy of the file prior to performing the source relocation.

102

Compiler Optimizations

Code-coverage Tool

The Intel® C++ Compiler Code-coverage Tool can be used for both IA-32 and Itanium®

architectures in a number of ways to improve development efficiency, reduce defects, and increase

application performance. The major features of the Intel compiler Code-coverage Tool are:

* Visual presentation of the application's code coverage information with a code-coverage
coloring scheme

» Display of the dynamic execution counts of each basic block of the application

» Differential coverage or comparison of the profiles of the application's two runs

Command-line Syntax

The syntax for this tool is as follows:

codecov [-codecov_option]

where - codecov_opt i on is a tool option. If you do not use any option, the tool will provide
the top-level code coverage for your whole program.

Tool Options

The tool uses options that are listed in the table that follows.

Option Description Default

-hel p Prints all the options of the code-coverage tool.

-spi file | Setsthe path name of the static profile information file pgopti . spi
.Spi.

-dpi file | Setsthe path name of the dynamic profile information file | pgopt i . dpi
. dpi .

-prj Sets the project name.

-counts Generates dynamic execution counts.

-nopartial | Treats partially covered code as fully covered code.

-conp Sets the filename that contains the list of files of interest.

-ref Finds the differential coverage with respect to ref dpi_file.

- denang Demangles both function names and their arguments.

- Mmarne Sets the name of the web-page owner.

- maddr Sets the email address of the web-page owner.

-bcol or Sets the html color name or code of the uncovered blocks. | #f f f f 99

103

Intel® C++ Compiler for Linux* Systems User's Guide

Option Description Default

-fcol or Sets the html color name or code of the uncovered #ffcccce
functions.

- pcol or Sets the html color name or code of the partially covered #f af ad2
code.

-ccol or Sets the html color name or code of the covered code. #HEFFFqref

- ucol or Sets the html color name or code of the unknown code. #HEFFFq1 o

Visual Presentation of the Application's Code Coverage

Based on the profile information collected from running the instrumented binaries when testing an
application, the Intel compiler creates HTML files using a code-coverage tool. These HTML files
indicate portions of the source code that were or were not exercised by the tests. When applied to
the profile of the performance workloads, the code-coverage information shows how well the
training workload covers the application's critical code. High coverage of performance-critical
modules is essential to taking full advantage of profile-guided optimizations.

The code-coverage tool can create two levels of coverage:
* Top level -- for a group of selected modules
* Individual module source view

Top Level Coverage

The top-level coverage reports the overall code coverage of the modules that were selected. The
following options are provided:

* You can select the modules of interest

* For the selected modules, the tool generates a list with their coverage information. The
information includes the total number of functions and blocks in a module and the portions
that were covered.

* By clicking on the title of columns in the reported tables, the lists may be sorted in
ascending or descending order based on:

* Dbasic block coverage
* function coverage
* function name.

The example that follows shows a top-level coverage summary for a project. By clicking on a
module name (for example, SAMPLE. C), the browser will display the coverage source view of
that particular module.

104

Compiler Optimizations

-J Intel® Compilers code-cowerage information for Sanple_Project - Microsolt Enternct Explorer " _!I:l ﬁl
Bl Edt Wew Favorkes ook Help
deback v = - (D [B] | BSewch alPaorites @Hede 0B | B b - &

udrmss [i8] Ol Coverageliak2 corngrde Learrpldisan eI CODE_ CONERAGE HTML e)
1
gl searetid by Intall Gompders Coverage Summary of Sample_Project

et R e

Filles Functions Blocks
tal ownd | wncyrd | curg® tedal cend uecerd cerg® fotal el wncerd | ourg'
3 1 1 GLET 19 5 14 2.3 13 X 108 EE

|
. . =l o . =
Covered Files in Sample_Project Uncayered Filez in Sample_Prajesct
Functinns Blocks Functions Bincks:
Hanen Hanin
total cerd curg® iodal oerd oergts iotal iodal
SEMPLELC 7 11438 510 2| 4m SEMPLED G 7 =]
SAWPLEC g 4 @00 34 23 ETES
e e intel garanited by Jotald ‘WabePaga Senan
‘L‘—“-‘_ = Inks|
il severeted by I0IEE Corpiary hekePage Gen S b
ardgcorarage el Lotsl
| |
3] [Ry Compuer 7

Browsing the Frames

The coverage tool creates frames that facilitate browsing through the code to identify uncovered
code. The top frame displays the list of uncovered functions while the bottom frame displays the
list of covered functions. For uncovered functions, the total number of basic blocks of each
function is also displayed. For covered functions, both the total number of blocks and the number
of covered blocks as well as their ratio (that is, the coverage rate) are displayed.

For example, 66.67(4/6) indicates that four out of the six blocks of the corresponding function
were covered. The block coverage rate of that function is thus 66.67%. These lists can be sorted
based on the coverage rate, number of blocks, or function names. Function names are linked to
the position in source view where the function body starts. So, just by one click, the user can see
the least-covered function in the list and by another click the browser displays the body of the
function. The user can then scroll down in the source view and browse through the function body.

Individual Module Source View

Within the individual module source views, the tool provides the list of uncovered functions as
well as the list of covered functions. The lists are reported in two distinct frames that provide easy
navigation of the source code. The lists can be sorted based on:

* the number of blocks within uncovered functions
» the block coverage in the case of covered functions

e the function names.

105

Intel® C++ Compiler for Linux* Systems User's Guide

This example shows the coverage source view of SAMPLE. C.

-al-'l:-:l E Compllers code-coversge infonmation for Dn\ COVERAGE |, TAI2 COMPILER) SAMPLE SAPLES\ SAMPLE, - Miorasolt Internet E3 er i ...In]il
M [dt Ben Fgwrkss Tmk teh E3
bmh v = - @ A Dsewen [SlFwedes Fneie (F]2 b Bl - |
Sddress |tjIII:|_Cn-uwmlnl".'i“fmnhﬂnMMMM\#‘&_{DMM_CMIED_EMME}M_E.HM "‘_'“I i‘a‘ﬁ:l
2y wold £i (int a) :]
p . 10 9§
fat [intgl 11 AL (nowe 4] 1] f w03 0
_‘_J 12} princt |*1 o Dy R"):
i3] 1
uncovanel fusctiang 14 1
. 15)
blpcks funaction 16) wold £2 (int a)
E EAE I
a 18] 1L (o= 1) || § &= O3] O
1) prinef ["1 o O\ EM):
2} 1
zi)
22)
23) wold gi Jint m
=l 24y ¢
Ll 2E) ime 5, k;
covered funclions 28]
2T Toe () ® 0@) <om: § 4k O
28 3 kb
cowerags funstion 2y ' |
G647 (48 2 EL
31)
8233 (g f1 2% weld ¢ (iRt)
10000 Ay at X}
100.00 [15/15) main 3y
35)
&)
M
8y
k)
i qa0) .fJ
&l | i Comatar 2

Setting the Coloring Scheme for the Code Coverage

The tool provides a visible coloring distinction of the following coverage categories:

* covered code

* uncovered basic blocks
* uncovered functions

* partially covered code

e unknown.

The default colors that the tool uses for presenting the coverage information are shown in the

tables that follows.

This color Means

Covered code
default color can be overridden with the - ccol or option.

The portion of code colored in this color was exercised by the tests. The

covered code
overridden with the - pcol or option.

Uncovered Basic blocks that are colored in this color were not exercised by any of the

basic block tests. They were, however, within functions that were executed during the
tests. The default color can be overridden with the - bcol or option.

Uncovered Functions that are colored in this color were never called during the tests. The

function default color can be overridden with the - f col or option.

Partially More than one basic block was generated for the code at this position. Some

of the blocks were covered while some were not. The default color can be

106

Compiler Optimizations

This color Means

Unknown No code was generated for this source line. Most probably, the source at this
position is a comment, a header-file inclusion, or a variable declaration. The
default color can be overridden with the - ucol or option.

The default colors can be customized to be any valid HTML color by using the options mentioned
for each coverage category in the table above.

For code-coverage colored presentation, the coverage tool uses the following heuristic. Source
characters are scanned until reaching a position in the source that is indicated by the profile
information as the beginning of a basic block. If the profile information for that basic block
indicates that a coverage category changes, then the tool changes the color corresponding to the
coverage condition of that portion of the code, and the coverage tool inserts the appropriate color
change in the HTML files.

SNote

You need to interpret the colors in the context of the code. For instance, comment lines that follow
a basic block that was never executed would be colored in the same color as the uncovered blocks.
Another example is the closing brackets in C/C++ applications.

Coverage Analysis of a Modules Subset

One of the capabilities of the Intel compiler Code-coverage Tool is efficient coverage analysis of
an application' s subset of modules. This analysis is accomplished based on the selected option -
conp of the tool's execution.

You can generate the profile information for the whole application, or a subset of it, and then
divide the covered modules into different components and use the coverage tool to obtain the
coverage information of each individual component. If only a subset of the application modules is
compiled with the - pr of _genx option, then the coverage information is generated only for
those modules that are involved with this compiler option, thus avoiding the overhead incurred for
profile generation of other modules.

To specify the modules of interest, use the tool's - conp option. This option takes the name of a
file as its argument. That file must be a text file that includes the name of modules or directories
you would like to analyze:

codecov -prj Project_Nanme -conp componentl

SNote

Each line of the component file should include one, and only one, module name.

Any module of the application whose full path name has an occurrence of any of the names in the
component file will be selected for coverage analysis. For example, if a line of file conponent 1
in the above example contains nod1. cpp, then all modules in the application that have such a
name will be selected. The user can specify a particular module by giving more specific path
information. For instance, if the line contains / cnpl/ nod1. cpp, then only those modules with
the name nod1. cpp will be selected that are in a directory named cnpl. If no component file is
specified, then all files that have been compiled with -pr of _genx are selected for coverage
analysis.

Dynamic Counters

This feature displays the dynamic execution count of each basic block of the application,
providing useful information for both coverage and performance tuning.

The coverage tool can be configured to generate information about dynamic execution counts.
This configuration requires the - count s option. The counts information is displayed under the

107

Intel® C++ Compiler for Linux* Systems User's Guide

code after a * sign precisely under the source position where the corresponding basic block
begins. If more than one basic block is generated for the code at a source position (macros, for
example), then the total number of such blocks and the number of the blocks that were executed
are also displayed in front of the execution count.

In certain situations, it may be desirable to consider all the blocks generated for a single source
position as one entity. In such cases, it is necessary to assume that all blocks generated for one
source position are covered when at least one of the blocks is covered. This assumption can be
configured with the - noparti al option. When this option is specified, decision coverage is
disabled, and the related statistics are adjusted accordingly. The code lines 11 and 12 indicate that
the pri nt f statement in line 12 was covered. However, only one of the conditions in line 11 was
ever true. With the - nopar ti al option, the tool treats the partially covered code (like the code
on line 11) as covered.

Differential Coverage

Using the code-coverage tool, you can compare the profiles of the application's two runs: a
reference run and a new run identifying the code that is covered by the new run but not covered by
the reference run. This feature can be used to find the portion of the application’s code that is not
covered by the application’s tests but is executed when the application is run by a customer. It can
also be used to find the incremental coverage impact of newly added tests to an application’s test
space.

The dynamic profile information of the reference run for differential coverage is specified by the -
r ef option, such as in the following command:

codecov -prj Project_Nanme -dpi custoner.dpi -ref appTests. dpi

The coverage statistics of a differential-coverage run shows the percentage of the code that was
exercised on a new run but was missed in the reference run. In such cases, the coverage tool shows
only the modules that included the code that was uncovered.

The coloring scheme in the source views also should be interpreted accordingly. The code that has
the same coverage property (covered or not covered) on both runs is considered as covered code.
Otherwise, if the new run indicates that the code was executed while in the reference run the code
was not executed, then the code is treated as uncovered. On the other hand, if the code is covered
in the reference run but not covered in the new run, the differential-coverage source view shows
the code as covered.

Running for Differential Coverage

To run the Intel compiler Code-coverage Tool for differential coverage, the following files are
required:

* The application sources

e The. spi file generated by the Intel compiler when compiling the application for the
instrumented binaries with the -pr of _genx option.

e The. dpi file generated by the Intel compiler pr of ner ge utility as the result of merging
the dynamic profile information . dyn files or the . dpi file generated implicitly by Intel
compiler when compiling the application with the - pr of _use option.

Once the required files are available, the coverage tool may be launched from this command line:
codecov -prj Project_Name -spi pgopti.spi -dpi pgopti.dpi
The - spi and - dpi options specify the paths to the corresponding files.

The Code-coverage Tool also has the following additional options for generating a link at the
bottom of each HTML page to send an electronic message to a named contact by using -nmanme
and - naddr options.

codecov -prj Project_ Name -mane John_Snith -maddr js@onpany.com

108

Compiler Optimizations

Test-prioritization Tool

The Intel® compiler Test-prioritization Tool enables profile-guided optimizations to select and

prioritize application tests based on prior execution profiles of the application. The tool offers a

potential of significant time saving in testing and developing large-scale applications where testing
is the major bottleneck. The tool can be used for both IA-32 and Itanium® architectures.

This tool lets you select and prioritize the tests that are most relevant for any subset of the
application's code. When certain modules of an application are changed, the Test-prioritization
Tool suggests the tests that are most probably affected by the change. The tool analyzes the profile
data from previous runs of the application, discovers the dependency between the application's
components and its tests, and uses this information to guide the process of testing.

Features and Benefits

The tool provides an effective testing hierarchy based on the application's code coverage. The
advantages of the tool usage can be summarized as follows:

* Minimizing the number of tests that are required to achieve a given overall coverage for any
subset of the application: the tool defines the smallest subset of the application tests that
achieve exactly the same code coverage as the entire set of tests.

* Reducing the turn-around time of testing: instead of spending a long time on finding a
possibly large number of failures, the tool enables the users to quickly find a small number
of tests that expose the defects associated with regressions caused by a change set.

* Selecting and prioritizing the tests to achieve certain level of code coverage in a minimal
time based on the data of the tests' execution time.

Command-line Syntax

The syntax for this tool is as follows:

tselect -dpi_list file

where - dpi _| i st is a required tool option that sets the path to the DPI list f i | e that contains
the list of the . dpi files of the tests you need to prioritize.

Tool Options

The tool uses options that are listed in the table that follows.

Option Description

-hel p Prints all the options of the test-prioritization tool.

-spi file Sets the path name of the static profile information file . Spi . Default
ispgopti . spi

-dpi _l'i st file |Setsthe path name of the file that contains the name of the dynamic
profile information (. dpi) files. Each line of the file should contain
one . dpi name optionally followed by its execution time. The name
must uniquely identify the test.

-prof _dpi fil e | Setsthe path name of the output report file.

-conp Sets the filename that contains the list of files of interest.

109

Intel® C++ Compiler for Linux* Systems User's Guide

Option Description

-cutof f val ue | Terminates when the cumulative block coverage reaches val ue% of
pre-computed total coverage. val ue must be greater than 0.0 (for
example, 99.00). It may be set to 100.

- not ot al Does not pre-compute the total coverage.
-mntime Minimizes testing execution time. The execution time of each test must
be provided on the same line of dpi _| i st file after the test name in

dd: hh: mm ss format.

-verbose Generates more logging information about the program progress.

Usage Requirements
To run the Test-prioritization Tool on an application’s tests, the following files are required:

* The. spi file generated by the Intel compilers when compiling the application for the
instrumented binaries with the -pr of _genx option.

* The. dpi files generated by the Intel compiler pr of mer ge tool as a result of merging the
dynamic profile information . dyn files of each of the application tests. The user needs to
apply the pr of mer ge tool to all . dyn files that are generated for each individual test and
name the resulting . dpi in a fashion that uniquely identifies the test. The pr of mer ge tool
merges all the . dyn files that exist in the given directory.

B Note

It is very important that you make sure that unrelated . dyn files, oftentimes from previous runs or
from other tests, are not present in that directory. Otherwise, profile information will be based on
invalid profile data. This can negatively impact the performance of optimized code as well as
generate misleading coverage information.

B Note

For successful tool execution, you should:
* Name each test . dpi file so that the file names uniquely identify each test.

* Create a DPI list file: a text file that contains the names of all . dpi test files. The name of
this file serves as an input for the test-prioritization tool execution command. Each line of
the DPI list file should include one, and only one, . dpi file name. The name can optionally
be followed by the duration of the execution time for a corresponding test in the
dd: hh: nm ss format.

For example: Test 1. dpi 00: 00: 60: 35 informs that Test 1 lasted 0 days, 0 hours, 60
minutes and 35 seconds. The execution time is optional. However, if it is not provided, then the
tool will not prioritize the test for minimizing execution time. It will prioritize to minimize the
number of tests only.

110

Compiler Optimizations

Usage Model

The chart that follows presents the Test-prioritization Tool usage model.

Step 1:

c ile with
ENE G Keep the static profile information

.spi for coverage analysis and PGT

prof_gen:

Instrurmented Executables
D app.exe
L \

~

Step 2.1 Step 2.n
Run instrumented executables on Run instrumented executables on
Test 1 Test_n

Merge Dynamic Profile Inforration Merge Dynamic Profile Information

dyn files dyn files
v é
Test_1.dpi Test_2.dpi Test_. Test_n.dpi

Step 3:
Run Test Priaritizer

Here are the steps for a simple example (Wy App. ¢) for IA-32 systems.
1. Set

PROF_ DI R=/ nyApp/ prof _dir

2. Issue command

pronpt >i cpc -prof _genx nyApp.c

This command compiles the program and generates an instrumented binary as well as the
corresponding static profile information pgopti . spi .

3. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated . dyn files present.
4. Issue command

nyApp < datal

Invocation of this command runs the instrumented application and generates one or more new
dynamic profile information files that have an extension . dyn in the directory specified by
PROF_DI R

111

Intel® C++ Compiler for Linux* Systems User's Guide

5. Issue command
prof merge -prof _dpi Test 1. dpi

At this step, the pr of mer ge tool merges all the . dyn files into one file (Test 1. dpi) that
represents the total profile information of the application on Test 1.

6. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated . dyn files present.
7. Issue command

nyApp < data2

This command runs the instrumented application and generates one or more new dynamic profile
information files that have an extension . dyn in the directory specified by PROF_DI R

8. Issue command
prof merge -prof _dpi Test 2. dpi

At this step, the pr of nmer ge tool merges all the . dyn files into one file (Test 2. dpi) that
represents the total profile information of the application on Test 2.

9. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated . dyn files present.
10. Issue command

nyApp < data3

This command runs the instrumented application and generates one or more new dynamic profile
information files that have an extension . dyn in the directory specified by PROF_DI R,

11. Issue Command
prof merge -prof_dpi Test 3. dpi

At this step, the pr of nmer ge tool merges all the . dyn files into one file (Test 3. dpi) that
represents the total profile information of the application on Test 3.

12. Create a file named t est s_| i st with three lines. The first line contains Test 1. dpi , the
second line contains Test 2. dpi , and the third line contains Test 3. dpi .

When these items are available, the Test-prioritization Tool may be launched from the command
line in PROF_DI R directory as described in the following examples. In all examples, the
discussion references the same set of data.

Example 1 Minimizing the Number of Tests
tselect -dpi _list tests list -spi pgopti. spi
where the -spi option specifies the path to the . spi file.

Here is a sample output from this run of the Test-prioritization Tool:

Total number of tests = 3
Total bl ock coverage ~ 52.17
Total function coverage ~ 50.00

112

Compiler Optimizations

Num | %RatCvrg | %BIkCvrg | %FncCvrg | Test Name @ Options
1 87.50 45.65 37.50 Test3.dpi
2 100.00 52.17 50.00 Test2.dpi

In this example, the Test-prioritization Tool has provided the following information:

* By running all three tests, we achieve 52.17% block coverage and 50.00% function
coverage.

* Test 3 covers 45.65% of the basic blocks of the application, which is 87.50% of the total
block coverage that can be achieved from all three tests.

* Byadding Test 2, we achieve a cumulative block coverage of 52.17% or 100% of the total
block coverage of Test 1, Test 2, and Test 3.

* Elimination of Test 1 has no negative impact on the total block coverage.
Example 2 Minimizing Execution Time

Suppose we have the following execution time of each test in thet est s_I i st file:

Test 1. dpi 00: 00: 60: 35
Test 2. dpi 00: 00: 10: 15
Test 3. dpi 00: 00: 30: 45

The following command executes the Test-prioritization Tool to minimize the execution time with
the - mi nt i me option:

tselect -dpi _list tests list -spi pgopti.spi -mntine
Here is a sample output:
Total number of tests = 3
Total bl ock coverage ~ 52.17
Total function coverage ~ 50.00
Total execution time = 1:41:35
num |elapsedTime | %RatCvrg | %BlIkCvrg | %FncCvrg | Test Name @ Options
1 10:15 75.00 39.13 25.00 Test2.dpi
2 41:00 100.00 52.17 50.00 Test3.dpi

In this case, the results indicate that the running all tests sequentially would require one hour, 45
minutes, and 35 seconds, while the selected tests would achieve the same total block coverage in
only 41 minutes.

B Note

The order of tests when prioritization is based on minimizing time (first Test 2, then Test 3)
could be different than when prioritization is done based on minimizing the number of tests. See
example above: first Test 3, then Test 2. In Example 2, Test 2 is the test that gives the highest
coverage per execution time. So, it is picked as the first test to run.

113

Intel® C++ Compiler for Linux* Systems User's Guide

Using Other Options

The - cut of f option enables the Test-prioritization Tool to exit when it reaches a given level of
basic block coverage.
tselect -dpi _list tests_ list -spi pgopti.spi -cutoff 85.00

If the tool is run with the cutoff value of 85.00 in the above example, only Test 3 will be
selected, as it achieves 45.65% block coverage, which corresponds to 87.50% of the total block
coverage that is reached from all three tests.

The Test-prioritization Tool does an initial merging of all the profile information to determine the
total coverage that is obtained by running all the tests. The - not ot al option. enables you to skip
this step. In such a case, only the absolute coverage information will be reported, as the overall
coverage remains unknown.

PGO API: Profile Information Generation Support

Profile Information Generation Support lets you control of the generation of profile information
during the instrumented execution phase of profile-guided optimizations. Normally, profile
information is generated by an instrumented application when it terminates by calling the standard
exi t () function. The functions described in this section may be necessary in assuring that
profile information is generated in the following situations:

* when the instrumented application exits using a non-standard exit routine

* when instrumented application is a non-terminating application where exi t () is never
called

* when you want control of when the profile information is generated

This section includes descriptions of the functions and environment variable that comprise Profile
Information Generation Support. The functions are available by inserting #i ncl ude
<pgouser . h> at the top of any source file where the functions may be used.

The compiler sets a def i ne for PGO_INSTRUMENT when you compile with either -
prof _gen or - pr of _genx.

Dumping Profile Information
void PGOPTI _Prof Dunp(void);
Description

This function dumps the profile information collected by the instrumented application. The
profile information is recorded in a . dyn file.

Recommended Usage

Insert a single call to this function in the body of the function which terminates your application.
Normally, PGOPTI _Pr of _Dunp should be called just once. It is also possible to use this
function in conjunction with _PGOPTI _Pr of _Reset () to generate multiple . dyn files
(presumably from multiple sets of input data).

114

Compiler Optimizations

Example

/1 Selectively collect profile information for the portion
/1 of the application involved in processing input data.

i nput _data = get _input_data();
whi | e(i nput _dat a)
_PGOPTI _Prof _Reset();
process_dat a(i nput _data);

_PGOPTI _Prof _Dunp();
i nput _data = get_input_data();

}

Resetting the Dynamic Profile Counters
void PGOPTI _Prof Reset(void);

Description

This function resets the dynamic profile counters.
Recommended Usage

Use this function to clear the profile counters prior to collecting profile information on a section of
the instrumented application. See the example under PGOPTI _Pr of _Dunp() .

Dumping and Resetting Profile Information
void PGOPTI _Prof Dunmp_And_Reset (void);
Description

This function may be called more than once. Each call will dump the profile information to a new
. dyn file. The dynamic profile counters are then reset, and execution of the instrumented
application continues.

Recommended Usage

Periodic calls to this function allow a non-terminating application to generate one or more profile
information files. These files are merged during the feedback phase of profile-guided
optimization. The direct use of this function allows your application to control precisely when the
profile information is generated.

Interval Profile Dumping
void _PGOPTI _Set Interval Prof Dump(int interval);
Description

This function activates Interval Profile Dumping and sets the approximate frequency at which
dumps will occur. The i nt er val parameter is measured in milliseconds and specifies the time
interval at which profile dumping will occur. For example, if i nt er val is set to 5000, then a
profile dump and reset will occur approximately every 5 seconds. The interval is approximate
because the time check controlling the dump and reset is only performed upon entry to any
instrumented function in your application.

115

Intel® C++ Compiler for Linux* Systems User's Guide

ff) Note

Setting i nt er val to zero or a negative number will disable interval profile dumping.

* Settingi nt erval to a very small value may cause the instrumented application to spend
nearly all of its time dumping profile information. Be sure to seti nt er val to a large
enough value so that the application can perform actual work and collect substantial profile
information.

Recommended Usage

Call this function at the start of a non-terminating application to initiate Interval Profile Dumping.
Note that an alternative method of initiating Interval Profile Dumping is by setting the
environment variable, PROF_DUMP_| NTERVAL, to the desired i nt er val value prior to
starting the application. The intention of Interval Profile Dumping is to allow a non-terminating
application to be profiled with minimal changes to the application source code.

Environment Variable
PROF_DUMP_| NTERVAL

This environment variable may be used to initiate Interval Profile Dumping in an instrumented
application. See the Recommended Usage of _PGOPTI _Set _| nt er val _Pr of _Dunp for
more information.

High-level Language Optimizations (HLO)

High-level optimizations (HLO) exploit the properties of source code constructs, such as loops
and arrays, in the applications developed in high-level programming languages, such as C++.
They include loop interchange, loop fusion, loop unrolling, loop distribution, unroll-and-jam,
blocking, data prefetch, scalar replacement, data layout optimizations, and others. The option that
turns on the high-level optimizations is - O3.

IA-32 and Itanium®-based applications

- @3 | Enable - O2 option plus more aggressive optimizations, for example, loop transformation
and prefetching. - O3 optimizes for maximum speed, but may not improve performance
for some programs.

IA-32 applications

- @B | In addition, in conjunction with the vectorization options, - ax{ K| W N| B| P} and -
x{ K| W N| B| P}, - O3 causes the compiler to perform more aggressive data dependency
analysis than for - O2. This may result in longer compilation times.

SNote

The - f ast option enhances execution speed across the entire program by including the following
options that can improve run-time performance:

* - O3 (maximum speed and high-level optimizations)
* -i po (enables interprocedural optimizations across files)
e -static (prevents linking with shared libraries)

To override one of the options set by - f ast , specify that option after the - f ast option on the
command line. The options set by - f ast may change from release to release.

116

Compiler Optimizations

To target - f ast optimizations for a specific processor, use one of the - X options. For example:
pronmpt >i cpc -fast -xWsource file.cpp
Loop Transformations

All these transformations are supported by data dependence. These techniques also include
induction variable elimination, constant propagation, copy propagation, forward substitution, and
dead code elimination. The loop transformation techniques include:

* loop normalization

* loop reversal

* loop interchange and permutation
* loop skewing

* loop distribution

* loop fusion

e scalar replacement

In addition to the loop transformations listed for both [A-32 and Itanium® architectures above, the
Itanium architecture allows collapsing techniques.

Absence of Loop-carried Memory Dependency with IVDEP
Directive

For Itanium®-based applications, the - i vdep_par al | el option indicates there is absolutely no
loop-carried memory dependency in the loop where | VDEP directive is specified. This technique
is useful for some sparse matrix applications. For example, the following loop requires -

i vdep_par al | el in addition to the directive | VDEP to indicate there is no loop-carried
dependencies.

Example

#pragma i vdep

for(i=1; i<n; i++)

}

The following example shows that using this option and the | VDEP directive ensures there is no
loop-carried dependency for the store into a() .

Example

#pragma i vdep
for(j=0; j<n; j++)

a[b[j]]=a[b[j]]+1;

117

Parallel Programming

For parallel programming, the Intel® C++ Compiler supports both the OpenMP* 2.0 API and an
automatic parallelization capability. The following table lists the options that perform OpenMP
and auto-parallelization support.

Option Description

-opennp Enables the parallelizer to generate multithreaded code based
on the OpenMP directives. Default: OFF.

-opennp_report{0]| 1| 2} | Controls the OpenMP parallelizer's diagnostic levels.
Default: - opennp_report 1.

- opennp_st ubs Enables compilation of OpenMP programs in sequential
mode. The OpenMP directives are ignored and a stub
OpenMP library is linked. Default: OFF.

-parall el Enables the auto-parallelizer to generate multithreaded code
for loops that can be safely executed in parallel. Default:
OFF.

- par _t hr eshol d{ n} Sets a threshold for the auto-parallelization of loops based on

the probability of profitable execution of the loop in parallel,
n=0 to 100. N=0 implies "always." Default: -
par _t hreshol d75.

-par_report{0| 1| 2| 3} | Controls the auto-parallelizer's diagnostic levels.
Default: - par _report1

B Note

When both - opennp and - par al | el are specified on the command line, the - par al | el
option is honored only in routines that do not contain OpenMP directives. For routines that contain
OpenMP directives, only the - opennp option is honored.

118

Parallel Programming

Vectorization (IA-32 only)

The vectorizer is a component of the Intel® C++ Compiler that automatically uses SIMD
instructions in the MMX™, SSE, and SSE2 instruction sets. The vectorizer detects operations in
the program that can be done in parallel, and then converts the sequential program to process 2, 4,
8, or 16 elements in one operation, depending on the data type.

This section provides guidelines, option descriptions, and examples for the Intel C++ Compiler
vectorization on IA-32 systems only. The following list summarizes this section's contents.

* aquick reference of vectorization functionality and features
* descriptions of compiler switches to control vectorization
* descriptions of the C++ language features to control vectorization
» discussion and general guidelines on vectorization levels:
e automatic vectorization
* vectorization with user intervention

* examples demonstrating typical vectorization issues and resolutions

Vectorizer Options

Option Description

-ax{ K| W N| B| P} | Enables the vectorizer and generates specialized and generic IA-32
code. The generic code is usually slower than the specialized code.

-x{KIWN B|P} |Turns on the vectorizer and generates processor-
specific specialized code.

-vec_reportn Controls the vectorizer's level of diagnostic messages:
¢ n =0 no diagnostic information is displayed.

* n =1 display diagnostics indicating loops successfully
vectorized (default).

e n =2sameasn =1, plus diagnostics indicating loops not
successfully vectorized.

e n =3sameasn =2, plus additional information about any
proven or assumed dependences.

Usage

If youuse - C, -i po with-vec_report{n} optionor-c,-x{ K| WN| B| P} or-
ax{ K| WN| B| P} with-vec_report{n},the compiler issues a warning and no report is
generated.

To produce a report when using the aforementioned options, you need to add the - i po_obj
option. The combination of - ¢ and - i po_obj produces a single file compilation, and hence does
generate object code, and eventually a report is generated.

119

Intel® C++ Compiler for Linux* Systems User's Guide

The following commands generate a vectorization report:
e prompt>icpc -x{K|WN| Bl P} -vec report3 file.cpp
e prompt>icpc -x{K|WN|B|P} -ipo -ipo_obj -vec report3 file.cpp

e prompt>icpc -¢c -x{K|WN B||P} -ipo -ipo_obj -vec_report3
file.cpp

The following commands do not generate a vectorization report:
e prompt>icpc -c -x{K|WMB|P} -vec report3 file.cpp
e prompt>icpc -x{K|WN| B|P} -ipo -vec report3 file.cpp
e prompt>icpc -c -x{K|WN B|P} -ipo -vec_report3 file.cpp
Loop Parallelization and Vectorization

Combining the - par al | el and - x{ K| W N| B| P} options instructs the compiler to attempt
both automatic loop parallelization and automatic loop vectorization in the same compilation. In
most cases, the compiler will consider outermost loops for parallelization and innermost loops for
vectorization. If deemed profitable, however, the compiler may even apply loop parallelization
and vectorization to the same loop.

Note that in some cases successful loop parallelization (either automatically or by means of
OpenMP* directives) may affect the messages reported by the compiler for loop vectorization; for
example, under the - vec_r epor t 2 option indicating loops not successfully vectorized.

Vectorization Key Programming Guidelines

The goal of vectorizing compilers is to exploit single-instruction multiple data (SIMD) processing
automatically. Review these guidelines and restrictions, see code examples in further topics, and
check them against your code to eliminate ambiguities that prevent the compiler from achieving
optimal vectorization.

Guidelines for loop bodies:
* use straight-line code (a single basic block)

* use vector data only; that is, arrays and invariant expressions on the right hand side of
assignments. Array references can appear on the left hand side of assignments

* use only assignment statements
Avoid the following in loop bodies:
» function calls
* unvectorizable operations
* mixing vectorizable types in the same loop
* data-dependent loop exit conditions
Preparing your code for vectorization

To make your code vectorizable, you will often need to make some changes to your loops.
However, you should make only the changes needed to enable vectorization and no others. In
particular, you should avoid these common changes:

e do not unroll your loops, the compiler does this automatically

* do not decompose one loop with several statements in the body into several single-statement
loops

120

Parallel Programming

Restrictions

Hardware. The compiler is limited by restrictions imposed by the underlying hardware. In the
case of Streaming SIMD Extensions, the vector memory operations are limited to stri de- 1
accesses with a preference to 16-byte-aligned memory references. This means that if the compiler
abstractly recognizes a loop as vectorizable, it still might not vectorize it for a distinct target
architecture.

Style. The style in which you write source code can inhibit optimization. For example, a common
problem with global pointers is that they often prevent the compiler from being able to prove two
memory references at distinct locations. Consequently, this prevents certain reordering
transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop
structures. The ambiguity arises from the complexity of the keywords, operators, data references,
and memory operations within the loop bodies.

However, by understanding these limitations and by knowing how to interpret diagnostic
messages, you can modify your program to overcome the known limitations and enable effective
vectorizations. The following topics summarize the capabilities and restrictions of the vectorizer
with respect to loop structures.

Data Dependence

Data dependence relations represent the required ordering constraints on the operations in serial
loops. Because vectorization rearranges the order in which operations are executed, any auto-
vectorizer must have at its disposal some form of data dependence analysis. The "Data-dependent
Loop" example shows some code that exhibits data dependence. The value of each element of an
array is dependent on itself and its two neighbors.

Data-dependent Loop

float data[N;
int i;

for (i=1; i<N-1; i++)
data[i]=data[i-1]*0.25+data[i]*0.5+data[i +1] *0. 25;

The loop in the example above is not vectorizable because the write to the current element

dat a[i] is dependent on the use of the preceding element dat a[i - 1] , which has already been
written to and changed in the previous iteration. To see this, look at the access patterns of the array
for the first two iterations as shown in the following example:

Data Dependence Vectorization Patterns

for(i=0; i<100; i++)
afi]=b[i];

has access pattern
read b[0]

wite a[0]

read b[1]

wite a[1]

i =1: READ dat a[0]
READ dat a[1]

READ dat a[2]

WRI TE dat a[1]

i =2: READ dat a[1]
READ dat a[2]

READ dat a[3]

WRI TE dat a[2]

121

Intel® C++ Compiler for Linux* Systems User's Guide

In the normal sequential version of the loop shown, the value of dat a[1] read during the second
iteration was written into the first iteration. For vectorization, the iterations must be done in
parallel, without changing the semantics of the original loop.

Data Dependence Theory

Data dependence analysis involves finding the conditions under which two memory accesses may
overlap. Given two references in a program, the conditions are defined by:

» whether the referenced variables may be aliases for the same (or overlapping) regions in
memory,

o for array references, the relationship between the subscripts.

For array references, the Intel® C++ Compiler's data dependence analyzer is organized as a series
of tests that progressively increase in power as well as time and space costs. First, a number of
simple tests are performed in a dimension-by-dimension manner, since independence in any
dimension will exclude any dependence relationship. Multi-dimensional arrays references that
may cross their declared dimension boundaries can be converted to their linearized form before the
tests are applied. Some of the simple tests used are the fast GCD test, proving independence if the
greatest common divisor of the coefficients of loop indices cannot evenly divide the constant term,
and the extended bounds test, which tests potential overlap for the extreme values of subscript
expressions.

If all simple tests fail to prove independence, the compiler will eventually resort to a powerful
hierarchical dependence solver that uses Fourier-Motzkin elimination to solve the data dependence
problem in all dimensions.

Loop Constructs

Loops can be formed with the usual f or and whi | € constructs. However, the loops must have a
single entry and a single exit to be vectorized.

Correct Usage

whi | e(i <n)

{
/1 1f branch is inside body of |oop
a[i]=b[i]*c[i];
if(a[i]<0.0)
{

a[i]=0.0;

}
i ++;

}

Incorrect Usage

whi | e(i <n)
if (condition) break;
/'l 2nd exit.
++i

122

Parallel Programming

Loop Exit Conditions

Loop exit conditions determine the number of iterations that a loop executes. For example, fixed
indexes for loops determine the iterations. The loop iterations must be countable; that is, the
number of iterations must be expressed as one of the following:

* aconstant
* aloop invariant term
* alinear function of outermost loop indices

Loops whose exit depends on computation are not countable. Examples below show countable and
non-countable loop constructs.

Correct Usage for Countable Loop

/1l Exit condition specified by "N 1b+1"
count =N;

whi | e(count ! =1b)

/1 1b is not affected within | oop
a[i]=b[i]*x;

bli]=[i]+sqrt(d[i]);

--count;

}

Correct Usage for Countable Loop

/1l Exit conditionis "(n-m2)/2"
i =0;
for(l=m I<n; |+=2)

ali]=b[i]*x;
bli]=c[i]+sqrt(d[i]);
+4i

}

Incorrect Usage for Non-Countable Loop

i =0;

/1 1terations dependent on afi]
whi l e(a[i]>0.0)
{

a[i]=b[i]*c[i];
+4i
}

Types of Loops Vectorized

For integer loops, MMX™ technology and Streaming SIMD Extensions provide SIMD
instructions for most arithmetic and logical operators on 32-bit, 16-bit, and 8-bit integer data
types. Vectorization may proceed if the final precision of integer wrap-around arithmetic will be
preserved. A 32-bit shift-right operator, for instance, is not vectorized if the final stored value is a
16-bit integer. Also, note that because the MM X™ instructions and Streaming SIMD Extensions
instruction sets are not fully orthogonal (byte shifts, for instance, are not supported), not all integer
operations can actually be vectorized.

123

Intel® C++ Compiler for Linux* Systems User's Guide

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point
numbers, the Streaming SIMD Extensions provide SIMD instructions for the arithmetic operators
+,-,*,and/ . Also, the Streaming SIMD Extensions provide SIMD instructions for the binary
M N, MAX, and unary SQRT operators. SIMD versions of several other mathematical operators
(like the trigonometric functions SI N, COS, TAN) are supported in software in a vector
mathematical run-time library that is provided with the Intel® C++ Compiler.

Strip Mining and Cleanup

Strip mining, also known as loop sectioning, is a loop transformation technique for enabling
SIMD-encodings of loops, as well as providing a means of improving memory performance. By

fragmenting a large loop into smaller segments or strips, this technique transforms the loop
structure in two ways:

* Itincreases the temporal and spatial locality in the data cache if the data are reusable in
different passes of an algorithm.

e It reduces the number of iterations of the loop by a factor of the length of each "vector," or
number of operations being performed per SIMD operation. In the case of Streaming SIMD
Extensions, this vector, or strip length, is reduced by 4 times: four floating-point data items
per single Streaming SIMD Extensions single-precision floating-point SIMD operation are
processed.

First introduced for vectorizers, this technique consists of the generation of code when each vector
operation is done for a size less than or equal to the maximum vector length on a given vector
machine.

The compiler automatically strip-mines your loop and generates a cleanup loop.

Before Vectorization

i =0;
whi | e(i <n)

/1 Original |oop code
afi]=b[i]+c[i];
+4i

}

After Vectorization

/1 The vectorizer generates the follow ng two | oops
i =0;

whi |l e(i <(n-n%t))
/1 Vector strip-mned | oop

/1 Subscript [i:i+3] denotes SIMD execution
afi:i+3]=b[i:i+3]+c[i:i+3];

I =i +4;
}
whi | e(i <n)
/1 Scal ar clean-up | oop
a[i]=b[i]+c[i];
++i ;
}

124

Parallel Programming

Statements in the Loop Body

The vectorizable operations are different for floating-point and integer data.

Floating-point Array Operations

The statements within the loop body may contain float operations (typically on arrays). Supported
arithmetic operations include addition, subtraction, multiplication, division, negation, square root,
max, and min. Operation on double precision types is not permitted unless optimizing for a
Pentium® 4 processor system, using the - X Wor - ax Wcompiler option.

Integer Array Operations

The statements within the loop body may contain char , unsi gned char,short, unsi gned
short,int,and unsi gned i nt. Calls to functions such as sqrt and f abs are also
supported. Arithmetic operations are limited to addition, subtraction, bitwise AND, OR, and XCR
operators, division (16-bit only), multiplication (16-bit only), min, and max. You can mix data
types only if the conversion can be done without a loss of precision. Some example operators
where you can mix data types are multiplication, shift, or unary operators.

Other Operations

No statements other than the preceding floating-point and integer operations are allowed. In
particular, note that the special __n64 and __ml28 datatypes are not vectorizable. The loop body
cannot contain any function calls. Use of the Streaming SIMD Extensions intrinsics (

_mm add_ps) are not allowed.

Language Support and Directives

This topic addresses language features that better help to vectorize code. The

decl spec(al i gn(n)) declaration enables you to overcome hardware alignment constraints.
Therestri ct qualifier and the pragmas address the stylistic issues due to lexical scope, data
dependence, and ambiguity resolution.

Language Support

Feature Description

__decl spec(align(n)) Directs the compiler to align the
variable to an n-byte boundary.
Address of the variable is
address nmod n=0.

__decl spec(align(n,off)) Directs the compiler to align the
variable to an n-byte boundary
with offset off within each n-
byte boundary. Address of the
variable is addr ess nod
n=off.

restrict Permits the disambiguator
flexibility in alias assumptions,
which enables more
vectorization.

125

Intel® C++ Compiler for Linux* Systems User's Guide

Feature Description

__assume_al i gned(a, n) Instructs the compiler to assume
that array a is aligned on an n-
byte boundary; used in cases
where the compiler has failed to
obtain alignment information.

#pragma i vdep Instructs the compiler to ignore
assumed vector dependencies.

#pragma vector{al i gned| unal i gned| al ways} | Specifies how to vectorize the
loop and indicates that
efficiency heuristics should be
ignored.

#pragma novect or Specifies that the loop should
never be vectorized

Multi-version Code

Multi-version code is generated by the compiler in cases where data dependence analysis fails to
prove independence for a loop due to the occurrence of pointers with unknown values. This
functionality is referred to as dynamic dependence testing.

Pragma Scope

These pragmas control the vectorization of only the subsequent loop in the program, but the
compiler does not apply them to any nested loops. Each nested loop needs its own pr agna
preceding it in order for the pr agma to be applied. You must place a pr agnma only before the
loop control statement.

#pragma vector always
Syntax: #pr agma vector al ways

Definition: This pragma instructs the compiler to override any efficiency heuristic during the
decision to vectorize or not. #pr agma vect or al ways will vectorize non-unit strides or very
unaligned memory accesses.

Example:

for(i =0; i <= N, i++)

a[32*i] = b[99*i];

#pragma ivdep
Syntax: #pr agma i vdep

Definition: This pr agnma instructs the compiler to ignore assumed vector dependences. To ensure
correct code, the compiler treats an assumed dependence as a proven dependence, which prevents
vectorization. This pr agna overrides that decision. Only use this when you know that the
assumed loop dependences are safe to ignore.

The loop in this example will not vectorize with the i vdep pr agmnma, since the value of k is not
known (vectorization would be illegal if k<0).

126

Parallel Programming

Example:

#pragma i vdep
for (i =0; I <m i++)

a[i] = a[i + k] * c;

#pragma vector
Syntax: #pragma vector{aligned | unaligned}

Definition: The vector loop pr agma means the loop should be vectorized, if it is legal to do so,
ignoring normal heuristic decisions about profitability. When the al i gned (or unal i gned)
qualifier is used with this pr agmma, the loop should be vectorized using al i gned (or

unal i gned) operations. Specify one and only one of al i gned or unal i gned.

&Caution

If you specify al i gned as an argument, you must be absolutely sure that the loop will be
vectorizable using this instruction. Otherwise, the compiler will generate incorrect code.

The loop in the example below uses the al i gned qualifier to request that the loop be vectorized
with aligned instructions, as the arrays are declared in such a way that the compiler could not
normally prove this would be safe to do so.

Example:

void foo (float *a)

#pragm vector aligned
for (i =0; i <m i++)

a[i] = a[i] * c;

}

The compiler has at its disposal several alignment strategies in case the alignment of data
structures is not known at compile-time. A simple example is shown below (but several other
strategies are supported as well). If, in the loop shown below, the alignment of a is unknown, the
compiler will generate a prelude loop that iterates until the array reference that occurs the most
hits an aligned address. This makes the alignment properties of & known, and the vector loop is
optimized accordingly.

127

Intel® C++ Compiler for Linux* Systems User's Guide

Alignment Strategies Example

float *a;

/1 alignnent unknown

for (i = 0; i < 100; i++)
a[i] = a[i] + 1.0f;

/1 dynam c | oop peeling

p = a & OxO0f;
if (p!=0)
{

p=(16 - p) / 4
for (i =0, i <p; i+4)

a[i] = a[i] + 1.0f;
}

/1 loop with a aligned (will be vectorized accordingly)
for (i = p; i < 100; i++)

a[i] = a[i] + 1.0f;

#pragma novector
Syntax: #pr agna novect or

Definition: The novect or loop pragma specifies that the loop should never be vectorized, even
if it is legal to do so. In this example, suppose you know the trip count (ub - | b) istoo low to
make vectorization worthwhile. You can use #pr agnae novect or to tell the compiler not to
vectorize, even if the loop is considered vectorizable.

Example:

void foo (int Ib, int ub)

#pragma novect or
for (j =1b; j < ub; j++)

a[j] =a[j] + bljl];

#pragma vector nontemporal
Syntax: #pr agma vect or nont enpor al

Definition: #pr agma vect or nont enpor al results in streaming stores on Pentium® 4
based systems. An example loop (float type) together with the generated assembly are shown in
the example below. For large N, significant performance improvements result on a Pentium 4
systems over a non-streaming implementation.

128

Parallel Programming

Example:

#pragma vect or nontenpor al
for (i =0; i <N, i++)
a[i] = 1,
. B1. 2:
movnt ps XMWORD PTR _af eax], xmmD
novnt ps XMWWORD PTR a[eax+16], xmmD

add eax, 32
cnp eax, 4096
jl .B1.2

Dynamic Dependence Testing Example

float *p, *q
for (i =L, I <=U i++)
{ . .
pli] =alil;
}
pL = p * 4*L;
pH = p + 4%y,
gL = g + 4*L
qH = q + 4*U
I{f (pH < qL || pL > gH
/1 loop wthout data dependence
for (i =L, i <= U i++)
{ . .
pli] =ali];
} else {
for (i =L, i <=U i++)
{ . .
pli] =alil;
}
}

Vectorization Examples
This section contains a few simple examples of some common issues in vector programming.
Argument Aliasing: A Vector Copy

The loop in the example below, a vector copy operation, vectorizes because the compiler can
provedest[i] andsrc[i] are distinct.

Vectorizable Copy Due To Unproven Distinction

void vec_copy(float *dest, float *src, int |en)

int i;
for(i=0; i<len; i++;)

dest[i]=srcl[i];
}

The restrict keyword in the example below indicates that the pointers refer to distinct objects.
Therefore, the compiler allows vectorization without generation of multi-version code.

129

Intel® C++ Compiler for Linux* Systems User's Guide

Using restrict to Prove Vectorizable Distinction

void vec_copy(float *restrict dest, float *restrict src, int
[en)

{ int i;
for(i=0; i<len; i++)
dest[i]=src[i];

}

Data Alignment

A 16-byte or greater data structure or array should be aligned so that the beginning of each
structure or array element is aligned in a way that its base address is a multiple of sixteen.

The "Misaligned Data Crossing 16-Byte Boundary" figure shows the effect of a data cache unit
(DCU) split due to misaligned data. The code loads the misaligned data across a 16-byte
boundary, which results in an additional memory access causing a six- to twelve-cycle stall. You
can avoid the stalls if you know that the data is aligned and you specify to assume alignment.

Misaligned Data Crossing 16-Byte Boundary
16 Byte 16 Byte

| Boundaries | ElnundariesJ

[I 1

CT T]
L
Mizaligned Crata

For example, if you know that elements a[0] and b[O] are aligned on a 16-byte boundary, then
the following loop can be vectorized with the alignment option on (#pr agnma vect or
al i gned):

Alignment of Pointers is Known

float *a, *b;
int i;

for(int i=0; i<10; i++)
afi]=b[i];

After vectorization, the loop is executed as shown here:
Vector and Scalar Clean-up lterations

2 wactor terations 2 clean-up iterations
in scalar mode

-
i=0.1,2,3i=4567 j=g20

Both the vector iterations a[0: 3] =b[0: 3] ; and a[4: 7] =b[4: 7] ; can be implemented
with aligned moves if both the elements a[0] and b[O] (or, likewise, a[4] and b[4]) are 16-
byte aligned.

& Caution

If you specify the vectorizer with incorrect alignment options, the compiler will generate
unexpected behavior. Specifically, using aligned moves on unaligned data, will result in an illegal
instruction exception.

130

Parallel Programming

Data Alignment Examples

The example below contains a loop that vectorizes but only with unaligned memory instructions.
The compiler can align the local arrays, but because | b is not known at compile-time. The correct
alignment cannot be determined.

Loop Unaligned Due to Unknown Variable Value at Compile Time

void f(int Ib)

float z2[N], a2[N, y2[N, x2;
for(i=lb; <N, 1++)

az[i]=a2[i]*x2+y2[i];

If you know that | b is a multiple of 4, you can align the loop with #pr agma. vect or
al i gned as shown in the example that follows:

Alignment Due to Assertion of Variable as Multiple of 4

void f(int Ib)
{ float z2[N], a2[N, y2[N, x2;
assert (| b%t==0);
#pragm vector aligned
for(i=lb; i<N i++)
az[i]=a2[i]*x2+y2[i];
}

Loop Interchange and Subscripts: Matrix Multiply

Matrix multiplication is commonly written as shown in the example below:

Typical Matrix Multiplication

for(i=0; i<N i++)
for(j=0; j<n; j++)
for(k=0; k<n; k++)
clillil=cli]li]+ali][k]*b[K][j];
}

}

The use of b[k] [],isnotastri de- 1 reference and therefore will not normally be
vectorizable. If the loops are interchanged, however, all the references will become stri de- 1 as
shown in the "Matrix Multiplication With Stride-1" example.

& Caution

Interchanging is not always possible because of dependencies, which can lead to different results.

131

Intel® C++ Compiler for Linux* Systems User's Guide

Matrix Multiplication With Stride-1

for(i = 0; i<N, i++)
for(k=0; k<n; k++)
for(j=0; j<n; j++)

cli]fil=cli][i]+ali][k]*b[k][j];

}

Auto Parallelization

The auto-parallelization feature of the Intel® C++ Compiler automatically translates serial
portions of the input program into equivalent multithreaded code. The auto-parallelizer analyzes
the dataflow of the program’s loops and generates multithreaded code for those loops which can
be safely and efficiently executed in parallel. This enables the potential exploitation of the parallel
architecture found in symmetric multiprocessor (SMP) systems.

Automatic parallelization relieves the user from:
* having to deal with the details of finding loops that are good worksharing candidates
» performing the dataflow analysis to verify correct parallel execution

* partitioning the data for threaded code generation as is needed in programming with
OpenMP directives.

The parallel run-time support provides the same run-time features found in OpenMP*, such as
handling the details of loop iteration modification, thread scheduling, and synchronization.

While OpenMP directives enable serial applications to transform into parallel applications quickly,
the programmer must explicitly identify specific portions of the application code that contain
parallelism and add the appropriate compiler directives. Auto-parallelization triggered by the -

par al | el option automatically identifies those loop structures which contain parallelism.
During compilation, the compiler automatically attempts to decompose the code sequences into
separate threads for parallel processing. No other effort by the programmer is needed.

The following example illustrates how a loop’s iteration space can be divided so that it can be
executed concurrently on two threads:

Original Serial Code

for (i=1; i<100; i++)
a[i] =af[i] + b[i] * c[i];

132

Parallel Programming

Transformed Parallel Code

/
f
{
}
/
f
{
}

* Thread 1 */

r (i=1; i<50; i++)

a[i] = a[i] + b[i] * c[i];
Thread 2 */

r (i=50; i<100; i++)

a[i] = a[i] + b[i] * c[i];

Programming with Auto-parallelization

The auto-parallelization feature implements some concepts of OpenMP*, such as worksharing
construct (with the par al | el for directive). This section provides specifics of auto-
parallelization.

Guidelines for Effective Auto-parallelization Usage

A loop is parallelizable if:

The loop is countable at compile time. This means that an expression representing how
many times the loop will execute (also called "the loop trip count") can be generated just
before entering the loop.

There are no FLOWMREAD after WRI TE), OUTPUT (WRI TE after READ) or ANTI (WRI TE
after READ) loop-carried data dependences. A loop-carried data dependence occurs when
the same memory location is referenced in different iterations of the loop. At the compiler's
discretion, a loop may be parallelized if any assumed inhibiting loop-carried dependencies
can be resolved by run-time dependency testing.

The compiler may generate a run-time test for the profitability of executing in paral | el for
loop with loop parameters that are not compile-time constants.

Coding Guidelines

Enhance the power and effectiveness of the auto-parallelizer by following these coding guidelines:

Expose the trip count of loops whenever possible. Specifically use constants where the trip
count is known and save loop parameters in local variables.

Avoid placing structures inside loop bodies that the compiler may assume to carry
dependent data, for example, function calls, ambiguous indirect references, or global
references.

Auto-parallelization Data Flow

For auto-parallelization processing, the compiler performs the following steps:

1.

2
3
4.
5
6

Data flow analysis

Loop classification
Dependence analysis
High-level parallelization
Data partitioning

Multi-threaded code generation

133

Intel® C++ Compiler for Linux* Systems User's Guide

These steps include:
* Data flow analysis: compute the flow of data through the program

* Loop classification: determine loop candidates for parallelization based on correctness and
efficiency as shown by threshold analysis

* Dependence analysis: compute the dependence analysis for references in each loop nest

* High-level parallelization:
» analyze dependence graph to determine loops which can execute in parallel.
* compute run-time dependency

* Data partitioning: examine data reference and partition based on the following types of
access: shared, private,andfirstprivate.

* Multi-threaded code generation:
* modify loop parameters
e generate entry/exit per threaded task

e generate calls to parallel runtime routines for thread creation and
synchronization
Auto-parallelization: Enabling, Options, and Environment
Variables

To enable the auto-parallelizer, use the - par al | el option. The - par al | el option detects
parallel loops capable of being executed safely in parallel and automatically generates
multithreaded code for these loops. An example of the command using auto-parallelization
follows:

pronmpt >i cpc -c -parallel prog.cpp
Auto-parallelization Options

The - par al | el option enables the auto-parallelizer if the - O2 (or - O3) optimization option is
also on (the default is - O2). The - par al | el option detects parallel loops capable of being
executed safely in parallel and automatically generates multithreaded code for these loops.

Option Description

-parallel Enables the auto-parallelizer

-paral l el _threshol d{ 1- Controls the work threshold needed for auto-

100} parallelization, see later subsection.

- par _report{1] 2| 3} Controls the diagnostic messages from the auto-
parallelizer, see later subsection.

134

Parallel Programming

Auto-parallelization Environment Variables

Variable Description Default

OVP_NUM _THREADS | Controls the number of | Number of processors currently installed

threads used. in the system while generating the
executable

OVP_SCHEDULE Specifies the type of static

runtime scheduling.

Auto-parallelization Threshold Control and Diagnostics
Threshold Control

The -par _t hr eshol d{ n} option sets a threshold for the auto-parallelization of loops based on
the probability of profitable execution of the loop in parallel. The value of n can be from 0 to 100.
The default value is 75. This option is used for loops whose computation work volume cannot be
determined at compile-time. The threshold is usually relevant when the loop trip count is unknown
at compile-time.

The - par _t hr eshol d{ n} option has the following versions and functionality:

Default: - par _t hr eshol d is not specified in the command line, which is the same as
when - par _t hr eshol dO is specified. The loops get auto-parallelized regardless of
computation work volume, that is, parallelize always.

- par _t hreshol d100 - loops get auto-parallelized only if profitable parallel execution is
almost certain.

The intermediate 1 to 99 values represent the percentage probability for profitable speed-up.
For example, Nn=50 would mean: parallelize only if there is a 50% probability of the code
speeding up if executed in parallel.

The default value of n is n=75 (or - par _t hr eshol d75). When - par _t hr eshol d is
used on the command line without a number, the default value passed is 75.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads
versus the amount of work available to be shared amongst the threads.

Diagnostics

The - par _report {0| 1| 2| 3} option controls the auto-parallelizer's diagnostic levels 0, 1, 2,
or 3 as follows:

- par _r epor t 0 = no diagnostic information is displayed.

- par _r eport 1 = indicates loops successfully auto-parallelized (default). Issues a "LOOP
AUTO PARALLELI ZED" message for parallel loops.

- par _r eport 2 = indicates successfully auto-parallelized loops as well as unsuccessful
loops.

- par _r eport 3 = same as 2 plus additional information about any proven or assumed
dependencies inhibiting auto-parallelization (reasons for not parallelizing).

135

Intel® C++ Compiler for Linux* Systems User's Guide

Example of Parallelization Diagnostics Report

The example below shows output generated by - par _r eport 3:
prompt >i cpc -c -parallel -par_report3 prog.cpp
Sample Ouput

program prog
procedure: prog

serial loop: line 5: not a parallel candidate due to
statenment at line 6
serial loop: line 9

fl ow data dependence fromline 10 to line 10, due to "a

12 Lines Conpil ed
where the program pr 0g. cpp is as follows:

Sample prog.c

/* Assuned side effects */
for (i=1; i<10000; i++)
a[i] = foo(i);

/* Actual dependence */
for (i=1; i<10000; i++)
a[i] =a[i-1] +i;

Troubleshooting Tips

* Use- par_t hreshol dO to see if the compiler assumed there was not enough
computational work

* Use-par_report 3 to view diagnostics

e Use-i po to eliminate assumed side-effects done to function calls

Parallelization with OpenMP*

The Intel® C++ Compiler supports the OpenMP* C++ version 2.0 API specification. OpenMP

provides symmetric multiprocessing (SMP) with the following major features:

* Relieves the user from having to deal with the low-level details of iteration space
partitioning, data sharing, and thread scheduling and synchronization.

* Provides the benefit of the performance available from shared memory, multiprocessor

systems.

The Intel C++ Compiler performs transformations to generate multithreaded code based on the
user's placement of OpenMP directives in the source program making it easy to add threading to
existing software. The Intel compiler supports all of the current industry-standard OpenMP
directives, except WORKSHARE, and compiles parallel programs annotated with OpenMP
directives. In addition, the Intel C++ Compiler provides Intel-specific extensions to the OpenMP
C++ version 2.0 specification including run-time library routines and environment variables.

136

Parallel Programming

ff—t_) Note

As with many advanced features of compilers, you must properly understand the functionality of
the OpenMP directives in order to use them effectively and avoid unwanted program behavior.

See parallelization options summary for all of the options of the OpenMP feature in the Intel C++
Compiler.

For complete information on the OpenMP standard, visit the OpenMP Web site at
http://www.openmp.org. For OpenMP* C++ version 2.0 API specifications, see
http://www.openmp.org/specs/.

Parallel Processing with OpenMP

To compile with OpenMP, you need to prepare your program by annotating the code with
OpenMP directives. The Intel C++ Compiler first processes the application and produces a
multithreaded version of the code which is then compiled. The output is a executable program
with the parallelism implemented by threads that execute parallel regions or constructs.

Targeting a Processor Run-time Check

While parallelzing a loop, the Intel compiler's loop parallelizer, OpenMP, tries to determine the
optimal set of configurations for a given processor. At run time, a check is performed to determine
for which IA-32 processor OpenMP should optimize a given loop. See detailed information in the
Processor-specific Runtime Checks, IA-32 Systems.

Performance Analysis

For performance analysis of your program, you can use the Intel® VTune™ Performance
Analyzer to show performance information. You can obtain detailed information about which
portions of the code require the largest amount of time to execute and where parallel performance
problems are located.

Parallel Processing Thread Model

This topic explains the processing of the parallelized program and adds more definitions of the
terms used in parallel programming.

The Execution Flow

As previously mentioned, a program containing OpenMP* C++ API compiler directives begins
execution as a single process, called the master thread of execution. The master thread executes
sequentially until the first parallel construct is encountered.

In the OpenMP C++ API, the #pr agma onp par al | el directive defines the parallel
construct. When the master thread encounters a parallel construct, it creates a team of threads,
with the master thread becoming the master of the team. The program statements enclosed by the
parallel construct are executed in parallel by each thread in the team. These statements include
routines called from within the enclosed statements.

The statements enclosed lexically within a construct define the static extent of the construct. The
dynamic extent includes the static extent as well as the routines called from within the construct.
When the #pr agma onp par al | el directive reaches completion, the threads in the team
synchronize, the team is dissolved, and only the master thread continues execution. The other
threads in the team enter a wait state. You can specify any number of parallel constructs in a single
program. As a result, thread teams can be created and dissolved many times during program
execution.

137

Intel® C++ Compiler for Linux* Systems User's Guide

Using Orphaned Directives

In routines called from within parallel constructs, you can also use directives. Directives that are
not in the lexical extent of the parallel construct, but are in the dynamic extent, are called orphaned
directives. Orphaned directives allow you to execute major portions of your program in parallel
with only minimal changes to the sequential version of the program. Using this functionality, you
can code parallel constructs at the top levels of your program and use directives to control
execution in any of the called routines. For example:

i nt mai n(voi d)

#b;agna onp paralle
phasel();

}
voi d phasel(voi d)
{

#b;agna onmp for private(i) shared(n)
for(i=0; i < n; I++)
{

some_wor k(i) ;

This is an orphaned directive because the parallel region is not lexically present.
Data Environment Directive

A data environment directive controls the data environment during the execution of parallel
constructs. You can control the data environment within parallel and worksharing constructs.
Using directives and data environment clauses on directives, you can:

* Privatize scope variables by using the THREADPRI VATE directive

* Control data scope attributes by using the THREADPRI VATE directive's clauses. The data
scope attribute clauses are:

» COPYIN
» DEFAULT
» PRIVATE

* FIRSTPRIVATE
« LASTPRIVATE
« REDUCTION

* SHARED

You can use several directive clauses to control the data scope attributes of variables for the
duration of the construct in which you specify them. If you do not specify a data scope attribute
clause on a directive, the default is SHARED for those variables affected by the directive.

Pseudo Code of the Parallel Processing Model

A sample pseudo program using some of the more common OpenMP directives is shown in the
code example that follows. This example also indicates the difference between serial regions and
parallel regions.

138

Parallel Programming

main() {

#pragma onmp paralle
{

#pragnma onp sections

{

#pragma onp section

(..}

#pragm onp section

{...}

#pragma onp for
nowai t

for(...) {

#pragma onp critica

{

#pragm onmp barrier

/1 Begin serial execution

/1 Only the master thread executes
/1 Begin a Parallel Construct, form
/] ateam This is Replicated Code
/1 (each team nenber executes

/'l the same code)

11

/1 Begin a Wrksharing Construct
I

/1 One unit of work

11

/1 Another unit of work

I

/1 Wit until both units of work
conpl ete

/1l More Replicated Code

11

/'l Begin a Worksharing Construct;
/] each iteration is unit of work
I

/1 Work is distributed anong the team
menber s

11

/1 End of Worksharing Construct;

/1l nowait was specified, so

/'l threads proceed

11

/1 Begin a Critical Section

11

/'l Replicated Code, but only one
/'l thread can execute it at a

/1 given tine

/1 More Replicated Code

11

/1 Wait for all team nenbers to arrive

139

Intel® C++ Compiler for Linux* Systems User's Guide

/1 More Replicated Code
/11

} /1 End of Parallel Construct;
/1 disband team and conti nue

/'l serial execution

11
/1 Possibly nore Parallel constructs
11

} /1 End serial execution

Compiling with OpenMP, Directive Format, and Diagnostics

To run the Intel® C++ Compiler in OpenMP* mode, invoke the compiler with the - opennp
option:

pronpt >i cpc -openmp file.cpp

Before you run the multithreaded code, you can set the number of desired threads in the OpenMP
environment variable, OVP_NUM _THREADS. See OpenMP Environment Variables for further
information.

-openmp Option

The - opennp option enables the parallelizer to generate multithreaded code based on the
OpenMP directives. The code can be executed in parallel on both uniprocessor and multiprocessor
systems. The - opennp option works with both - Q0 (no optimization) and any optimization level
of - OL, - Q2 (default) and - 3. Specifying - C0 with - opennp helps to debug OpenMP
applications.

OpenMP Directive Format and Syntax
An OpenMP directive has the form:
#pragma onp directive-nane [clause, ...] newine
where:
e #pragnma onp -- Required for all OpenMP directives.

* directive-nane -- A valid OpenMP directive. Must appear after the pr agma and
before any clauses.

* cl ause -- Optional. Clauses can be in any order, and repeated as necessary unless
otherwise restricted.

* new i ne -- Required. Proceeds the structured block which is enclosed by this directive.

140

Parallel Programming

OpenMP Diagnostics

The - opennp_r eport { 0] 1| 2} option controls the OpenMP parallelizer's diagnostic levels O,
1, or 2 as follows:

* -opennp_report 0 =no diagnostic information is displayed.

* -opennp_report 1 =display diagnostics indicating loops, regions, and sections
successfully parallelized.

e -opennp_report2=same as-opennp_report 1 plus diagnostics indicating
MASTER constructs, SI NGLE constructs, CRI Tl CAL constructs, ORDERED constructs,
ATOM C directives, etc. are successfully handled.

The default is - opennp_report 1.
OpenMP* Directives and Clauses
OpenMP Directives

Directive Name Description

paral | el Defines a parallel region.

for Identifies an iterative work-sharing construct that specifies a region
in which the iterations of the associated loop should be executed in
parallel.

sections Identifies a non-iterative work-sharing construct that specifies a set

of constructs that are to be divided among threads in a team.

single Identifies a construct that specifies that the associated structured
block is executed by only one thread in the team.

parallel for A shortcut for a par al | el region that contains a single f or
directive. The par al | el orf or OpenMP directive must be
immediately followed by a f or statement. If you place other
statement or an OpenMP directive between the par al | el orfor
directive and the f or statement, the Intel C++ Compiler issues a
syntax error.

paral | el sections | Provides a shortcut form for specifying a parallel region containing
a single sect i ons directive.

mast er Identifies a construct that specifies a structured block that is
executed by the master thread of the team.

critical [l ock] Identifies a construct that restricts execution of the associated
structured block to a single thread at a time.

barrier Synchronizes all the threads in a team.
atom c Ensures that a specific memory location is updated atomically.
flush Specifies a "cross-thread" sequence point at which the

implementation is required to ensure that all the threads in a team
have a consistent view of certain objects in memory.

141

Intel® C++ Compiler for Linux* Systems User's Guide

Directive Name Description

ordered The structured block following an or der ed directive is executed
in the order in which iterations would be executed in a sequential
loop.

threadprivate Makes the named file-scope or namespace-scope variables
specified private to a thread but file-scope visible within the
thread.

OpenMP Clauses

Clause Description

private Declares variables to be pri vat e to each thread in a team.

firstprivate | Provides a superset of the functionality provided by the pr i vat e clause.

| ast private | Provides a superset of the functionality provided by the pr i vat e clause.

shar ed Shares variables among all the threads in a team.

def aul t Enables you to affect the data-scope attributes of variables.
reduction Performs a reduction on scalar variables.

ordered The structured block following an or der ed directive is executed in the

order in which iterations would be executed in a sequential loop.

if Ifthei f (scal ar _| ogi cal _expressi on) clause is present, the
enclosed code block is executed in parallel only if the

scal ar _| ogi cal _expr essi on evaluates to TRUE. Otherwise the
code block is serialized.

schedul e Specifies how iterations of the f or loop are divided among the threads of
the team.
copyin Provides a mechanism to assign the same name to t hr eadpri vat e

variables for each thread in the team executing the parallel region.

OpenMP* Support Libraries

The Intel® C++ Compiler with OpenMP* support provides a production support library,
| i bgui de. a. This library enables you to run an application under different execution modes. It
is used for normal or performance-critical runs on applications that have already been tuned.

ﬂNote

The | i bgui de. | i b library is linked dynamically, regardless of command-line options, to avoid
performance issues that are hard to debug.

142

Parallel Programming

Execution Modes

The Intel compiler with OpenMP enables you to run an application under different execution
modes that can be specified at run time. The libraries support the serial, turnaround, and
throughput modes. These modes are selected by using the KMP_L| BRARY environment variable
at run time.

Serial
The serial mode forces parallel applications to run on a single processor.
Turnaround

In a dedicated (batch or single user) parallel environment where all processors are exclusively
allocated to the program for its entire run, it is most important to effectively utilize all of the
processors all of the time. The turnaround mode is designed to keep active all of the processors
involved in the parallel computation in order to minimize the execution time of a single job. In this
mode, the worker threads actively wait for more parallel work, without yielding to other threads.

]
Z_4Note

Avoid over-allocating system resources. This occurs if either too many threads have been
specified, or if too few processors are available at run time. If system resources are over-allocated,
this mode will cause poor performance. The throughput mode should be used instead if this
occurs.

Throughput

In a multi-user environment where the load on the parallel machine is not constant or where the
job stream is not predictable, it may be better to design and tune for throughput. This minimizes
the total time to run multiple jobs simultaneously. In this mode, the worker threads will yield to
other threads while waiting for more parallel work.

The throughput mode is designed to make the program aware of its environment (that is, the
system load) and to adjust its resource usage to produce efficient execution in a dynamic
environment. Throughput mode is the default.

OpenMP* Environment Variables

This topic describes the OpenMP* environment variables (with the OMP_ prefix) and Intel-
specific environment variables (with the KMP_ prefix).

Standard Environment Variables

Variable Description Default

OVP_SCHEDULE Sets the runtime schedule type and chunk size. | STATI C(no chunk
size specified)

OVP_NUM_THREADS | Sets the number of threads to use during Number of
execution. processors

OVP_DYNAM C Enables (TRUE) or disables (FALSE) the FALSE
dynamic adjustment of the number of threads.

OVP_NESTED Enables (TRUE) or disables (FALSE) nested FALSE
parallelism.

143

Intel® C++ Compiler for Linux* Systems User's Guide

Intel Extension Environment Variables

Environment Description
Variable

Default

KMP_LI BRARY Selects the OpenMP run-time library throughput. The

t hr oughput

suffix b, k, m g, ort , to specify bytes, kilobytes,
megabytes, gigabytes, or terabytes.

options for the variable value are: seri al , (execution
t ur nar ound, or t hr oughput indicating the mode)
execution mode. The default value of t hr oughput
is used if this variable is not specified.

KMP_STACKSI ZE | Sets the number of bytes to allocate for each parallel | IA-32: 2m
thread to use as its private stack. Use the optional [tanium®

compiler: 4m

OpenMP* Run-time Library Routines

OpenMP* provides several run-time library functions to assist you in managing your program in
parallel mode. Many of these functions have corresponding environment variables that can be set

as defaults. The run-time library functions enable you to dynamically change these factors to assist

in controlling your program. In all cases, a call to a run-time library function overrides any

corresponding environment variable.

The following table specifies the interfaces to these routines. The names for the routines are in
user name space. The onp. h and onp_I i b. h header files are provided in the | NCLUDE

directory of your compiler installation.

There are definitions for two different locks, onp_I| ock_ki nd and onp_nest | ock_ki nd,

which are used by the functions in the table that follows:

Execution Environment Routines

Function Description

onp_set _num_ t hr eads(nt hr eads) Sets the number of threads to use for
subsequent parallel regions.

onp_get _num t hr eads() Returns the number of threads that are being
used in the current parallel region.

onp_get _max_t hreads() Returns the maximum number of threads
that are available for parallel execution.

to the program.

onp_get thread_num() Returns the unique thread number of the
thread currently executing this section of
code.

onp_get _num procs() Returns the number of processors available

144

Parallel Programming

Function Description

onp_in_parallel() Returns TRUE if called within the dynamic
extent of a parallel region executing in
parallel; otherwise returns FALSE.

onp_set _dynami c(dynam c_t hreads) | Enables or disables dynamic adjustment of
the number of threads used to execute a
parallel region. If dynami c_t hr eads is
TRUE, dynamic threads are enabled. If
dynani c_t hr eads is FALSE, dynamic
threads are disabled. Dynamics threads are
disabled by default.

onp_get _dynam c() Returns TRUE if dynamic thread adjustment
is enabled, otherwise returns FALSE.

onp_set nest ed(nest ed) Enables or disables nested parallelism. If
nest ed is TRUE, nested parallelism is
enabled. If nest ed is FALSE, nested
parallelism is disabled. Nested parallelism is
disabled by default.

onp_get nested() Returns TRUE if nested parallelism is
enabled, otherwise returns FALSE.

Lock Routines

Function Description

onp_init_lock(lock) Initializes the lock associated with | ock for use in
subsequent calls.

onp_destroy_| ock(| ock) Causes the lock associated with | ock to become
undefined.
onmp_set _| ock(| ock) Forces the executing thread to wait until the lock

associated with | ock is available. The thread is
granted ownership of the lock when it becomes
available.

onp_unset _I ock(1 ock) Releases the executing thread from ownership of
the lock associated with | ock. The behavior is
undefined if the executing thread does not own the
lock associated with | ock.

omp_t est _| ock(Il ock Attempts to set the lock associated with | ock. If
successful, returns TRUE, otherwise returns FALSE.

145

Intel® C++ Compiler for Linux* Systems User's Guide

Function

Description

onp_init_nest_| ock(l ock)

Initializes the nested lock associated with | ock for
use in the subsequent calls.

onp_destroy_nest | ock(l ock)

Causes the nested lock associated with | ock to
become undefined.

onp_set _nest | ock(Il ock)

Forces the executing thread to wait until the nested
lock associated with | ock is available. The thread
is granted ownership of the nested lock when it
becomes available.

onp_unset _nest _| ock(Il ock)

Releases the executing thread from ownership of
the nested lock associated with | ock if the nesting
count is zero. Behavior is undefined if the executing
thread does not own the nested lock associated with
| ock.

onp_test _nest _| ock(! ock)

Attempts to set the nested lock associated with
| ock. If successful, returns the nesting count,
otherwise returns zero.

Timing Routines

Function

Description

onp_get _wtime()

Returns a double-precision value equal to the elapsed wallclock time
(in seconds) relative to an arbitrary reference time. The reference time
does not change during program execution.

onp_get _wtick()

Returns a double-precision value equal to the number of seconds
between successive clock ticks.

146

Parallel Programming

Examples of OpenMP* Usage

The following examples show how to use the OpenMP* feature.

A Simple Difference Operator

This example shows a simple parallel loop where the amount of work in each iteration is different.
Dynamic scheduling is used to get good load balancing. The f or has a nowai t because there is
an implicit bar ri er at the end of the parallel region.

void for_1 (float a[], float b[], int n)

int i, j;
#pragma onp parallel shared(a,b,n) private(i,j)
{

#pragma onmp for schedul e(dynanic, 1) nowait

for(i =1; i <n; i++4)
for(j = 0; j <=1i; |++)
b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)])/2.0;

}

}

Two Difference Operators

The example below uses two parallel loops fused to reduce fork/join overhead. The first f or has a
nowai t because all the data used in the second loop is different than all the data used in the first
loop.

void for_2 (float a[], float b[], float c[], \
float d[], int n, int

int i, j;
#pragma onp parallel shared(a,b,c,d,n,m private(i,j)
{

#pragma onmp for schedul e(dynanic, 1) nowait

for(i =1; i < n; i++4)
for(j =0; j <=1i; j++)
b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)])/2.0;
#pragma onmp for schedul e(dynanic, 1) nowait
for(i =1; i <m i++4)
{
for(j jo<= 0)

:O'
dij + nmti] = (c[j + n¥i] + c[j + nm(i-1)])/2.0;

147

Intel® C++ Compiler for Linux* Systems User's Guide

Intel Extensions to OpenMP
Intel Workqueuing Model

The workqueuing model lets you parallelize control structures that are beyond the scope of those
supported by the OpenMP* model, while attempting to fit into the framework defined by
OpenMP. In particular, the workqueuing model is a flexible mechanism for specifying units of
work that are not pre-computed at the start of the worksharing construct. For si ngl e, f or , and
sect i ons constructs all work units that can be executed are known at the time the construct
begins execution. The workqueuing pragmas taskq and task relax this restriction by specifying an
environment (the taskq) and the units of work (the tasks) separately.

Intel Extensions

The Intel® C++ Compiler implements the following groups of functions as extensions to the
OpenMP* run-time library:

» getting and setting stack size for parallel threads
* memory allocation

The Intel extensions described in this section can be used for low-level debugging to verify that
the library code and application are functioning as intended. It is recommended to use these
functions with caution because using them requires the use of the - opennp_st ubs command-
line option to execute the program sequentially. These functions are also generally not recognized
by other vendor's OpenMP-compliant compilers, which may cause the link stage to fail for these
other compilers.

ff) Note

The functions below require the pre-processor directive #i ncl ude <onp. h>.
Stack Size

In most cases, directives can be used in place of extensions. For example, the stack size of the
parallel threads may be set using the KMP_STACKSI ZE environment variable rather than the
knp_set st acksi ze_s() function.

f) Note

A run-time call to an Intel extension takes precedence over the corresponding environment
variable setting. See the definitions of stack size functions in the Stack Size table below.

Memory Allocation

The Intel® C++ Compiler implements a group of memory allocation functions as extensions to the
OpenMP run-time library to enable threads to allocate memory from a heap local to each thread.
These functions are knp_mal | oc(), knp_cal | oc(),and knp_real | oc() . The memory
allocated by these functions must also be freed by the knp_f r ee()) function. While it is legal for
the memory to be allocated by one thread and knp_f r ee() 'd by a different thread, this mode of
operation has a slight performance penalty. See the definitions of these functions in the Memory
Allocation table below.

148

Parallel Programming

Stack Size

Function

Description

knmp_get _st acksi ze_s()

Returns the number of bytes that will be allocated for
each parallel thread to use as its private stack. This
value can be changed with

knmp_set _stacksi ze_s() prior to the first
parallel region or with the KMP_STACKSI ZE
environment variable.

knmp_get _st acksi ze()

This function is provided for backwards compatibility
only. Use knp_get _st acksi ze_s() for
compatibility across different families of Intel
processors.

knp_set _stacksi ze_s(si ze)

Sets to Si ze the number of bytes that will be allocated
for each parallel thread to use as its private stack. This
value can also be set via the KMP_STACKSI ZE
environment variable. In order for

knmp_set st acksi ze_s() to have an effect, it
must be called before the beginning of the first
(dynamically executed) parallel region in the program.

knmp_set st acksi ze(si ze)

This function is provided for backward compatibility
only; use knp_set _st acksi ze_s() for
compatibility across different families of Intel
processors.

Memory Allocation

Function

Description

knp_mal | oc(si ze)

Allocate memory block of Si ze bytes from thread-
local heap.

knp_cal l oc(nel em el size) | Allocate array of nel emelements of size el si ze
from thread-local heap.
knp_real l oc(ptr, size) Reallocate memory block at address pt r and si ze

bytes from thread-local heap.

knp_free(ptr)

Free memory block at address pt r from thread-local
heap. Memory must have been previously allocated
with knmp_mal | oc(),knp_cal | oc(),or
knmp_real | oc().

149

Intel® C++ Compiler for Linux* Systems User's Guide

Workqueuing Constructs
taskq Pragma

The t askq pragma specifies the environment within which the enclosed units of work (tasks) are
to be executed. From among all the threads that encounter a t askq pragma, one is chosen to
execute it initially. Conceptually, the t askq pragma causes an empty queue to be created by the
chosen thread, and then the code inside the t askq block is executed single-threaded. All the other
threads wait for work to be enqueued on the conceptual queue. The t ask pragma specifies a unit
of work, potentially executed by a different thread. When a t ask pragma is encountered lexically
within a t askq block, the code inside the t ask block is conceptually enqueued on the queue
associated with the t askq. The conceptual queue is disbanded when all work enqueued on it
finishes, and when the end of the t askq block is reached.

Control Structures

Many control structures exhibit the pattern of separated work iteration and work creation, and are
naturally parallelized with the workqueuing model. Some common cases are:

e whil e loops

e C++ iterators

* recursive functions.
while Loops

If the computation in each iteration of a whi | e loop is independent, the entire loop becomes the
environment for the t askg pragma, and the statements in the body of the whi | e loop become
the units of work to be specified with the t ask pragma. The conditional in the whi | e loop and
any modifications to the control variables are placed outside of the t ask blocks and executed
sequentially to enforce the data dependencies on the control variables.

C++ lterators

C++ Standard Template Library (STL) iterators are very much like the whi | e loops just
described, whereby the operations on the data stored in the STL are very distinct from the act of
iterating over all the data. If the operations are data-independent, they can be done in parallel as
long as the iteration over the work is sequential. This type of whi | e loop parallelism is a
generalization of the standard OpenMP* worksharing for loops. In the worksharing for loops, the
loop increment operation is the iterator and the body of the loop is the unit of work. However,
because the f or loop iteration variable frequently has a closed form solution, it can be computed
in parallel and the sequential step avoided.

Recursive Functions

Recursive functions also can be used to specify parallel iteration spaces. The mechanism is similar
to specifying parallelism using the sect i ons pragma, but is much more flexible because it
allows arbitrary code to sit between the t askq and the t ask pragmas, and because it allows
recursive nesting of the function to build a conceptual tree of t askq queues. The recursive
nesting of the t askq pragmas is a conceptual extension of OpenMP worksharing constructs to
behave more like nested OpenMP parallel regions. Just like nested parallel regions, each nested
workqueuing construct is a new instance and is encountered by exactly one thread. However, the
major difference is that nested workqueuing constructs do not cause new threads or teams to be
formed, but rather re-use the threads from the team. This permits very easy multi-algorithmic
parallelism in dynamic environments, such that the number of threads need not be committed at
each level of parallelism, but instead only at the top level. From that point on, if a large amount of
work suddenly appears at an inner level, the idle threads from the outer level can assist in getting
that work finished. For example, it is very common in server environments to dedicate a thread to
handle each incoming request, with a large number of threads awaiting incoming requests. For a
particular request, its size may not be obvious at the time the thread begins handling it. If the

150

Parallel Programming

thread uses nested workqueuing constructs, and the scope of the request becomes large after the
inner construct is started, the threads from the outer construct can easily migrate to the inner
construct to help finish the request.

Since the workqueuing model is designed to preserve sequential semantics, synchronization is
inherent in the semantics of the t askq block. There is an implicit team barrier at the completion
of the t askq block for the threads that encountered the t askq construct to ensure that all of the
tasks specified inside of the t askq block have finished execution. This t askq barrier enforces
the sequential semantics of the original program. Just like the OpenMP worksharing constructs, it
is assumed you are responsible for ensuring that either no dependences exist or that dependencies
are appropriately synchronized between the task blocks, or between code in a task block and code
in the t askq block outside of the task blocks.

The syntax, semantics, and allowed clauses are designed to resemble OpenMP* worksharing
constructs. Most of the clauses allowed on OpenMP worksharing constructs have a reasonable
meaning when applied to the workqueuing pragmas.

taskq Construct

#pragma intel onmp taskqg [clause[[,]clause]...]
structured- bl ock

where cl ause can be any of the following:

e private (variable-list)

o firstprivate (variable-Ilist)

» Jlastprivate (variable-list)

* reduction (operator : variable-list)
 ordered

* nowait

private

The pri vat e clause creates a private, default-constructed version for each object in

vari abl e-1i st forthet askq. It also implies capt ur epri vat e on each enclosed task.
The original object referenced by each variable has an indeterminate value upon entry to the
construct, must not be modified within the dynamic extent of the construct, and has an
indeterminate value upon exit from the construct.

firstprivate

The firstprivat e clause creates a private, copy-constructed version for each object in

vari abl e-Ii st for the t askq. It also implies capt ur epri vat e on each enclosed task.
The original object referenced by each variable must not be modified within the dynamic extent of
the construct and has an indeterminate value upon exit from the construct.

lastprivate

The | ast pri vat e clause creates a private, default-constructed version for each object in
vari abl e-1i st forthet askq. It also implies capt ur epri vat e on each enclosed task.
The original object referenced by each variable has an indeterminate value upon entry to the
construct, must not be modified within the dynamic extent of the construct, and is copy-assigned
the value of the object from the last enclosed task after that task completes execution.

reduction

The r educt i on clause performs a reduction operation with the given operator in enclosed task
constructs for each object invari abl e-1i st. operat or and vari abl e-1i st are defined
the same as in the OpenMP Specifications.

151

Intel® C++ Compiler for Linux* Systems User's Guide

ordered

The or der ed clause performs ordered constructs in enclosed t ask constructs in original
sequential execution order. The t askq directive, to which the or der ed is bound, must have an
or der ed clause present.

nowait

The nowai t clause removes the implied barrier at the end of the t askq. Threads may exit the
t askq construct before completing all the t ask constructs queued within it.

task Construct

#pragma intel onp task [clause[[,]clause]...]
structured-bl ock

where cl ause can be any of the following:

e private(variable-list)

e captureprivate(variable-list)
private

The pri vat e clause creates a private, default-constructed version for each object in

vari abl e-1i st for the t ask. The original object referenced by the variable has an
indeterminate value upon entry to the construct, must not be modified within the dynamic extent
of the construct, and has an indeterminate value upon exit from the construct.

captureprivate

The capt ur epri vat e clause creates a private, copy-constructed version for each object in
vari abl e-1i st forthet ask at the time the t ask is enqueued. The original object referenced
by each variable retains its value but must not be modified within the dynamic extent of the t ask
construct.

Combined parallel and taskq Construct

#pragma intel onmp parallel taskq [clause[[,]clause]...]
structured- bl ock

where cl ause can be any of the following:
 if(scal ar-expression)
* numthreads(integer-expression)
e copyin(variable-list)
» default(shared | none)
» shared(variable-list)
» private(variable-Ilist)
« firstprivate(variable-list)
» Jlastprivate(variable-list)
e reduction(operator : variable-Ilist)
 ordered

Cl ause descriptions are the same as for the OpenMP par al | el construct or the t askq
construct above as appropriate.

152

Parallel Programming

Example Function

The t est 1 function below is a natural candidate to be parallelized using the workqueuing model.
You can express the parallelism by annotating the loop with a parallel t askq pragma and the
work in the loop body with a t ask pragma. The parallel t askq pragma specifies an environment
for the whi | e loop in which to enqueue the units of work specified by the enclosed t ask
pragma. Thus, the loop’s control structure and the enqueuing are executed single-threaded, while
the other threads in the team participate in dequeuing the work from the t askq queue and
executing it. The capt ur epr i vat e clause ensures that a private copy of the link pointer p is
captured at the time each task is being enqueued, hence preserving the sequential semantics.

void test1(LI ST p)

#pragma intel onp

#pragm inte
do_wor k1(p);

p = p->next;

paral |l el taskqg shared(p)

?hile (p !'= NULL)

onp task captureprivate(p)

153

Optimization Support Features

This section describes language extensions to the Intel® C++ Compiler that let you optimize your
source code directly. Examples are included of optimizations supported by Intel extended
directives and library routines that enhance and/or help analyze performance.

Compiler Directives

This section discusses the language extended directives used in:
* Software Pipelining
e Loop Count and Loop Distribution
¢ Loop Unrolling
* Prefetching

e Vectorization

Pipelining for Itanium®-based Applications

The swp and noswp directives indicate preference for a loop to get software-pipelined or not.
The swp directive does not help data dependence, but overrides heuristics based on profile counts
or lop-sided control flow. The syntax for this directive is:

#pragma swp
#pragma noswp
Example of swp Directive

#pragma swp
for (i=0; 1<m; i++)

if (a[i]==0)
b[i]=a[i]+1;
el se

b[i]=al[i]*2;

The software pipelining optimization triggered by the Swp directive applies instruction scheduling
to certain innermost loops, allowing instructions within a loop to be split into different stages,
allowing increased instruction level parallelism. This can reduce the impact of long-latency
operations, resulting in faster loop execution. Loops chosen for software pipelining are always
innermost loops that do not contain procedure calls that are not inlined. Because the optimizer no
longer considers fully unrolled loops as innermost loops, fully unrolling loops can allow an
additional loop to become the innermost loop. You can request and view the optimization report to
see whether software pipelining was applied (see Optimizer Report Generation).

154

Optimization Support Features

Loop Count and Loop Distribution
loop count (n) Directive

The | oop count (n) directive indicates the loop count is likely to be n. The syntax for this
directive is:

#pragma | oop count (n)

where n is an integer constant. The value of | 0op count affects heuristics used in software
pipelining, vectorization and loop-transformations.

Example of loop count (n) Directive

#pragma | oop count (10000)
for(i=0; i<m i++)

//swp likely to occur in this |oop
a[i]=b[i]+1.2;

distribute point Directive

The di st ri but e poi nt directive indicates to the compiler a preference of performing loop
distribution. The syntax for this directive is:

#pragma di stribute point

Loop distribution may cause large loops be distributed into smaller ones. This may enable
software pipelining for more loops. If the directive is placed inside a loop, the distribution is
performed after the directive and any loop-carried dependency is ignored. If the directive is placed
before a loop, the compiler will determine where to distribute and data dependency is observed.
Only one distribute directive is supported when placed inside the loop.

Example of distribute point Directive

#pragma di stribute point
for(i=1; i<m i++)
b[i]=a[i]+1;

/1 Conpiler will automatically
/1 deci de where to distribute.
/| Dat a dependency is observed.

cli]=a[i]+b[i];

dli]=c[i]+1;

for(i=1; i<m i++)
b[i]=a[i]+1;

#pragma di stribute point

155

Intel® C++ Compiler for Linux* Systems User's Guide

//Distribution will start here,
/lignoring all |oop-carried dependency.
sub(a, n);

cli]=a[i]+b[i];

dli]=c[i]+1;

Loop Unrolling Support
unroll Directive

The unr ol | directive (unr ol | (n) | nounr ol |) tells the compiler how many times to unroll a
counted loop. The syntax for this directive is:

#pragma unrol |
#pragma unrol | (n)
#pragma nounr ol |

where n is an integer constant from 0 through 255. The unr ol | directive must precede the f or
statement for each f or loop it affects. If n is specified, the optimizer unrolls the loop n times. If n
is omitted, or if it is outside the allowed range, the optimizer assigns the number of times to unroll
the loop. The unr ol | directive overrides any setting of loop unrolling from the command line.
The directive can be applied only for the innermost nested loop. If applied to the outer loops, it is
ignored. The compiler generates correct code by comparing n and the loop count.

Example of unroll Directive

#pragma unrol | (4)

for(i=1;, i<m i++)

Prefetching Support

prefetch Directive

The pr ef et ch and nopr ef et ch directives assert that the data prefetches are generated or not
generated for some memory references. This affects the heuristics used in the compiler. The
syntax for this directive is:

#pragma nopref etch
#pragm prefetch
#pragma prefetch a,b

If the expression a[j] is used within a loop, by placing pr ef et ch a in front of the loop, the
compiler will insert prefetches for a[j +d] within the loop, where d is determined by the
compiler. This directive is supported when option - OB is on.

156

Optimization Support Features

Example of prefetch Directive

#pragma noprefetch b
#pragma prefetch a

for(i=0; i<m i++)
a[i]=b[i]+1;

Vectorization Support (I1A-32)

The vect or directives control the vectorization of the subsequent loop in the program, but the
compiler does not apply them to nested loops. Each nested loop needs its own directive preceding
it. You must place the vector directive before the loop control statement.

vector always Directive

The vect or al ways directive instructs the compiler to override any efficiency heuristic during
the decision to vectorize or not, and will vectorize non-unit strides or very unaligned memory
accesses.

Example of vector always Directive

#pragm vector al ways
for(i=0; i<=N, i++)

a[32*i]=b[99*i] ;

ivdep Directive

The i vdep directive instructs the compiler to ignore assumed vector dependences. To ensure
correct code, the compiler treats an assumed dependence as a proven dependence, which prevents
vectorization. This directive overrides that decision. Use i vdep only when you know that the
assumed loop dependences are safe to ignore. The loop in the example below will not vectorize
with the i vdep, since the value of k is not known (vectorization would be illegal if k<0).

Example of ivdep Directive

#pragma i vdep
for(i=0; i<m i++)

a[i]=ali+k]*c;

vector aligned Directive

The vect or al i gned directive means the loop should be vectorized, if it is legal to do so,
ignoring normal heuristic decisions about profitability. When the al i gned or unal i gned
qualifier is used, the loop should be vectorized using al i gned or unal i gned operations.
Specify either al i gned or unal i gned, but not both.

& Caution

If you specify al i gned as an argument, you must be absolutely sure that the loop will be
vectorizable using this instruction. Otherwise, the compiler will generate incorrect code. The loop
in the example below uses the al i gned qualifier to request that the loop be vectorized with

157

Intel® C++ Compiler for Linux* Systems User's Guide

al i gned instructions, as the arrays are declared in such a way that the compiler could not
normally prove this would be safe to do so.

Example of vector aligned Directive

#void foo(float *a)

{ #pragm vector aligned
for(i=0; i<m i++)
a[i]=a[i]*c;

}

The compiler includes several alignment strategies in case the alignment of data structures is not
known at compile time. A simple example is shown below, but several other strategies are
supported as well. If, in the loop shown below, the alignment of @ is unknown, the compiler will
generate a prelude loop that iterates until the array reference that occurs the most hits an aligned
address. This makes the alignment properties of a known, and the vector loop is optimized
accordingly.

Example of Alignment Strategies

float *a;

/1 Al'i gnment unknown
for(i=0; i<100; i++)

a[i]=a[i]+1.0f;

/I Dynami c | oop peeling

p=a & 0xOf;
i f (p!=0)
p=(16-p)/4;

for(i=0; i<p; i++)

a[i]=a[i]+1.0f;

a[i]=a[i]+1.0f;

}

//Loop with a aligned.

[IWI1l be vectorized accordingly.
for(i=p; i<100; i++)

{

}

novector Directive

The novect or directive specifies that the loop should never be vectorized, even if it is legal to
do so. In this example, suppose you know the trip count (ub - | b) is too low to make
vectorization worthwhile. You can use novect or to tell the compiler not to vectorize, even if the
loop is considered vectorizable.

158

Optimization Support Features

Example of novector Directive

void foo(int |b, int ub)

#pragma novect or
for(j=Ib; j<ub; j++)

alj]=a[j]+b[]];
}

Optimizer Report Generation

The Intel® C++ Compiler provides options to generate and manage optimization reports:

e -opt_report generates an optimization report and directs it to St der r . By default, the
compiler does not generate optimization reports.

e -opt_report filefil enane generates an optimization report and directs it to a file
specified in fi | ename.

e -opt_report_I|evel {m n| ned| max} specifies the detail level of the optimization
report. The m n argument provides the minimal summary and max produces the full report.
The default is - opt _r eport _| evel mi n.

e -opt_report_routinefileroutine_substring generates reports from all
routines with names containing the Subst r i ng as part of their name. If not specified,
reports from all routines are generated. By default, the compiler generates reports for all
routines.

Specifying Optimizations to Generate Reports

The compiler can generate reports for an optimizer you specify in the phase argument of the -
opt _report _phasephase option. The option can be used multiple times on the same
command line to generate reports for multiple optimizers. Currently, the following optimizer
reports are supported.

Optimizer | Optimizer Full Name

Logical

Name

i po Interprocedural Optimizer

hl o High Level Optimizer

ilo Intermediate Language Scalar Optimizer
ecg Code Generator

onp Open MP

al | All phases

When one of the above logical names for optimizers is specified, all reports from that optimizer
are generated. For example, - opt _report _phasei po -opt _report_phaseecg
generates reports from the interprocedural optimizer and the code generator.

159

Intel® C++ Compiler for Linux* Systems User's Guide

Each of the optimizers can potentially have specific optimizations within them. Each of these
optimizations are prefixed with one of the optimizer logical names. For example:

Optimizer_optimization Full Name

i po_inline Interprocedural Optimizer, inline expansion of functions

i po_const ant _propagati on | Interprocedural Optimizer, constant propagation

i po_function_reorder Interprocedural Optimizer, function reorder

i | o_constant_propagation | Intermediate Language Scalar Optimizer, constant
propagation

il o_copy_propagation Intermediate Language Scalar Optimizer, copy
propagation

ecg_sof tware_pi pelining |Code Generator, software pipelining

All optimization reports that have a matching prefix with the specified optimizer are generated.
For example, if - opt _r eport _phase il o_co is specified, a report from both the constant
propagation and the copy propagation are generated.

The Availability of Report Generation

The - opt _r eport _hel p option lists the logical names of optimizers available for report
generation.

Timing Your Application

How fast your application executes is one indication of performance. When timing the speed of
applications, consider the following circumstances:

* Run program timings when other users are not active. Your timing results can be affected by
one or more CPU-intensive processes also running while doing your timings.

* Try to run the program under the same conditions each time to provide the most accurate
results, especially when comparing execution times of a previous version of the same
program. Use the same system (processor model, amount of memory, version of the
operating system, and so on) if possible.

* Ifyou do need to change systems, you should measure the time using the same version of
the program on both systems, so you know each system's effect on your timings.

* For programs that run for less than a few seconds, run several timings to ensure that the
results are not misleading. Certain overhead functions, like loading external programs, might
influence short timings considerably.

* If your program displays a lot of text, consider redirecting the output from the program.
Redirecting output from the program will change the times reported because of reduced
screen 1/O.

160

Optimization Support Features

The following program illustrates a model for program timing:

/* Sanple Timng */
#i ncl ude <stdi 0. h>
#i ncl ude <stdlib. h>
#i ncl ude <tine. h>

i nt mai n(voi d)

clock t start, finish;

| ong | oop;

doubl e duration, |oop_calc;
start = clock();

for (1l oop=0; |oop <= 2000; | oop++)

| oop_calc = 123.456 * 789;

[1printf(
\

nt inculded to facilitate exanple
printf("

)
nThe val ue of loop is: %", |oop);
finish = clock();

printf("\n%.3f seconds\n", duration);

duration = (double)(finish - start)/CLOCKS PER _SEC,

161

Compiler Limits

The table below shows the size or number of each item that the compiler can process. All
capacities shown in the table are tested values; the actual number can be greater than the number
shown.

ltem Tested Values

Control structure nesting (block nesting) 512

Conditional compilation nesting 512
Declarator modifiers 512
Parenthesis nesting levels 512

Significant characters, internal identifier 2048

External identifier name length 64K

Number of external identifiers/file 128K

Number of identifiers in a single block 2048

Number of macros simultaneously defined | 128K

Number of parameters to a function call 512
Number of parameters per macro 512
Number of characters in a string 128K
Bytes in an object 512K
Include file nesting depth 512
Case labels in a switch 32K
Members in one structure or union 32K

Enumeration constants in one enumeration | 8192

Levels of structure nesting 320

Size of arrays 2GB

162

Key Files

Key Files Summary for 1A-32 Compiler

The following tables list and briefly describe files that are installed for use by the IA-32 version of

the compiler.

/bin Files

File Description

codecov Code-coverage tool

i ccvar s. sh | Batch file to set environment variables
icc.cfg Configuration file for use from command line
icc Intel® C++ Compiler

i cpc

prof merge | Utility used for Profile Guided Optimizations
pr of or der Utility used for Profile Guided Optimizations
tsel ect Test-prioritization tool

xi ar Tool used for Interprocedural Optimizations
xild Tool used for Interprocedural Optimizations

/include Files

File

Description

dvec. h

SSE 2 intrinsics for Class Libraries

emm func. h

Header file for SSE2 intrinsics (used by emmi ntri n. h)

emmntrin. h

Principal header file for SSE2 intrinsics

float.h IEEE 754 version of standard f | oat . h

fvec. h SSE intrinsics for Class Libraries

i S0646. h Standard header file

ivec.h MMX™ instructions intrinsics for Class Libraries

163

Intel® C++ Compiler for Linux* Systems User's Guide

File Description

limts.h Standard header file

mat hf . h Principal header file for legacy Intel Math Library
mat hi nf . h Principal header file for current Intel Math Library

mmintrin.h

Intrinsics for MMX instructions

onmp. h Principal header file OpenMP*
onp_lib.h Header file for OpenMP
pgouser . h For use in the instrumentation compilation phase of profile-guided

optimizations

pmmintrin.h

Principal header file for Streaming SIMD Extensions 3 intrinsics

proto. h

sse2mmx. h Principal header file for Streaming SIMD Extensions 2 intrinsics
stdarg. h Replacement header for standard st dar g. h

st dbool . h Defines _Bool keyword

stddef. h Standard header file

syslimts.h

varargs. h

Replacement header for standard var ar gs. h

xarg. h

Header file used by st dar gs. h and varargs. h

xmm func. h

Header file for Streaming SIMD Extensions

xnmmutils. h

Utilities for Streaming SIMD Extensions

xmmintrin. h

Principal header file for Streaming SIMD Extensions intrinsics

164

Key Files

/lib Files
Library Description
|'i bgui de. a For OpenMP* implementation
l'i bgui de. so
| i bgui de_stats.a | OpenMP static library for the parallelizer tool with performance
|'i bgui de_st at's. so | satistics and profile information
|'i bonpstub. a Library that resolves references to OpenMP subroutines when
OpenMP is not in use
[ibsvn.a Short vector math library
l[ibirc.a Intel support library for PGO and CPU dispatch
libircm.a Mulit-thread versiononl i birc. a
[ibinf.a Intel math library
[ibinf.so Intel math library
l'ibcprts.a Dinkumware* C++ Library
libcprts.so
libcprts.so.3

bunwi nd. a
bunwi nd. so
bunwi nd. so. 3

Unwinder library

bcxa. a
bcxa. so
bcxa. so. 3

Intel run time support for C++ features

bcxaguard. a
bcxaguar d. so
bcxaguard. so. 3

Used for interoperability support with the - cxx| i b- gcc option.
See gcc Interoperability.

165

Intel® C++ Compiler for Linux* Systems User's Guide

Key Files Summary for Itanium® Compiler

The following tables list and briefly describe files that are installed for use by the Itanium®

compiler.
/bin Files
File Description
codecov Code-coverage tool

i ccvars. sh | Batch file to set environment variables

icc.cfg Configuration file for use from command line
icc Intel® C++ Compiler
i cpc

prof merge | Utility used for Profile Guided Optimizations

prof order | Utility used for Profile Guided Optimizations

t sel ect Test-prioritization tool
Xi ar Tool used for Interprocedural Optimizations
xild Tool used for Interprocedural Optimizations

/include Files

File Description

emmintrin. h | Principal header file for SSE2 intrinsics

float.h IEEE 754 version of standard f | oat . h
fvec. h SSE intrinsics for Class Libraries
iabdintrin.h

i ab4regs. h Standard header file

i S0646. h Standard header file

ivec.h MMX™ instructions intrinsics for Class Libraries
limts.h Standard header file

mat hi nf. h Principal header file for current Intel Math Library
mmintrin.h Intrinsics for MMX instructions

166

Key Files

File Description

onp. h Principal header file OpenMP*

pgouser . h For use in the instrumentation compilation phase of profile-guided
optimizations

proto.h

sse2mx. h Principal header file for Streaming SIMD Extensions 2 intrinsics

stdarg. h Replacement header for standard st dar g. h

st dbool . h Defines _Bool keyword

stddef. h Standard header file

syslimts.h

varargs. h

Replacement header for standard var ar gs. h

xarg. h

Header file used by st dar gs. h and varargs. h

xmmntrin.h

Principal header file for Streaming SIMD Extensions intrinsics

/lib Files

File Description

[ibcprts.a C++ standard language library

l'i bcxa. so C++ language library indicating I/O data location

libirc.a Intel-specific library (optimizations)

[ibma Math library

[i bgui de. a OpenMP library

l'i bgui de. so Shared OpenMP library

I'i brofl. a Multiple Object Format Library, used by the Intel assembler
[ibmofl.so Shared Multiple Object Format Library, used by the Intel assembler

i bunwi nder. a

Unwinder library

libintrins.a

Intrinsic functions library

167

Diagnostics and Messages

This section describes the various messages that the compiler produces. These messages include
the sign-on message and diagnostic messages for remarks, warnings, or errors. The compiler
always displays any diagnostic message, along with the erroneous source line, on the standard
output.

This section also describes how to control the severity of diagnostic messages.

Diagnostic Messages

Option | Description

-w0 Display errors (same as - W)

-wl Display warnings and errors (DEFAULT)

- W2 Display remarks, warnings, and errors

Language Diagnostics

These messages describe diagnostics that are reported during the processing of the source file.
These diagnostics have the following format:

filenane (linenum: type [#nn]: nessage

fi | ename | Indicates the name of the source file currently being processed.

I i nenum | Indicates the source line where the compiler detects the condition.

type Indicates the severity of the diagnostic message: warning, remark, error, or
catastrophic error.

[#nn] The number assigned to the error (or warning) message. Hard errors or
catastrophes are not assigned a number.

message | Describes the diagnostic.

The following is an example of a warning message:

tantst.cpp(3): warning #328: Local variable "increment" never
used.

The compiler can also display internal error messages on the standard error. If your compilation
produces any internal errors, contact your Intel representative. Internal error messages are in the
following form:

FATAL COWPI LER ERROR nessage

168

Diagnostics and Messages

Suppressing Warning Messages with lint
Comments

The UNIX | i nt program attempts to detect features of a C or C++ program that are likely to be
bugs, non-portable, or wasteful. The compiler recognizes three | i nt -specific comments:

1. /* ARGSUSED*/
2. [* NOTREACHED*/
3. [/ *VARARGS*/

Like the | i nt program, the compiler suppresses warnings about certain conditions when you
place these comments at specific points in the source.

Suppressing Warning Messages or Enabling
Remarks

Use the - wor - Wh option to suppress warning messages or to enable remarks during the
preprocessing and compilation phases. You can enter the option with one of the following
arguments:

Option | Description

-w0 Display only errors (same as - W)

-wl Display warnings and errors (DEFAULT)

- W2 Display remarks, warnings, and errors

For some compilations, you might not want warnings for known and benign characteristics, such
as the K&R C constructs in your code. For example, the following command compiles
newpr og. cpp and displays compiler errors, but not warnings:

pronpt >i cpc - WD newpr og. cpp
Use the - ww, - we, or - wd option to indicate specific diagnostics.

Option Description
-WwWL1[L2, ..., Ln] |Changes the severity of diagnostics L1 through Ln to warning,
-welL1[L2,...,Ln] | Changes the severity of diagnostics L1 through Ln to error.
-wdL1[L2, ..., Ln] | Disables diagnostics L1 through Ln.

Example

/* test.c */
int main()

int x=0;

169

Intel® C++ Compiler for Linux* Systems User's Guide

If you compile t est . ¢ (above) using the - WAl | option (enable all warnings), the compiler will
emit warning #177:

prompt>icc -Wall test.c

remark #177: variable 'x' was declared but never referenced
To disable warning #177, use the - wd option:

prompt>i cc -Wall -wdl177 test.c

Likewise, using the -we option will result in a compile-time error:

prompt>icc -Wall -wel77 test.c

was decl ared but never referenced
conpil ati on aborted for test.c

Limiting the Number of Errors Reported

Use the - wnn option to limit the number of error messages displayed before the compiler aborts.
By default, if more than 100 errors are displayed, compilation aborts.

error #177: variable 'x

Option | Description

-wnn/ i | Limit the number of error diagnostics that will be displayed prior to aborting
compilation to n. Remarks and warnings do not count towards this limit.

For example, the following command line specifies that if more than 50 error messages are
displayed during the compilation of a. cpp, compilation aborts.

prompt >i cpc -wn50 -c a.cpp
Remark Messages

These messages report common, but sometimes unconventional, use of C or C++. The compiler
does not print or display remarks unless you specify level 4 for the - Woption, as described in
Suppressing Warning Messages or Enabling Remarks. Remarks do not stop translation or linking.
Remarks do not interfere with any output files. The following are some representative remark
messages:

e function declared inplicitly
e type qualifiers are neaningless in this declaration

e controlling expression is constant

170

Intel Math Library

The Intel® C++ Compiler includes a mathematical software library containing highly optimized
and very accurate mathematical functions. These functions are commonly used in scientific or
graphic applications, as well as other programs that rely heavily on floating-point computations.
Support for C99 _Conpl ex data types is included by using the - c99 compiler option. The
mat hi nf . h header file includes prototypes for the library functions. See Using the Intel Math
Library. For a complete list of the functions available, refer to the Function List in this section.

Math Libraries for IA-32 and Itanium®-based Systems

The math library linked to an application depends on the compilation or linkage options specified.
Refer to the table below:

Library Description

l'i bi nf.a |Default static math library.

I'i bi nf. so | Default shared math library.

171

Intel® C++ Compiler for Linux* Systems User's Guide

Using the Intel Math Library

To use the Intel math library, include the header file, mat hi nf . h, in your program. Below, are
two example programs that illustrate the use of the math library.

Example Using Real Functions

/1 real _math.c

#i ncl ude <stdi 0. h>
#i ncl ude <mat hi nf. h>

int main() {

float fp32bits;

doubl e fp64bits;

| ong doubl e fp80bits;

| ong double pi_by four = 3.141592653589793238/ 4. 0;

/1 pil4 radians is about 45 degrees.

fp32bits = (float) pi_by four; /1 float approximation to pi/4
fp64bits = (double) pi_by four; // double approximtion to
pi/4

fp80bits = pi_by_ four; /1 1ong doubl e (extended)

approxinmation to pi/4

/1 The sin(pi/4) is known to be 1/sqgrt(2) or approxi mtely
. 7071067

printf("Wen x
sinf (fp32bits));
printf("Wen x
sin(fp64bits));
printf("When x = % 0. 20Lf, sinl(x) = 9%0.20f \n", fp80bits,
sinl (fp80bits));

8. 8f, sinf(x) = 98.8f \n", fp32bits,
%6. 16f, sin(x) = %6.16f \n", fp64dbits,

return O;

}

Since the example program above includes the | ong doubl e data type, be sure to include the -
| ong_doubl e compiler option:

pronpt >i cc -1ong _double real _math.c

The output of a. out will look like this:

When x = 0.78539816, sinf(x) = 0.70710678
When x = 0.7853981633974483, sin(x) = 0.7071067811865475
When x = 0.78539816339744827900, sinl(x) =

0.70710678118654750275

172

Intel Math Library

Example Using Complex Functions

/1 conplex_math.c

#i ncl ude <stdi 0. h>
#i ncl ude <mat hi nf. h>

int main()

float _Conpl ex ¢32in,c32out;

doubl e _Conpl ex c¢64i n, c64out;

doubl e pi _by four= 3.141592653589793238/ 4. 0;
c64in =1.0 + | _* pi_by four

/1 Create the double precision conplex nunmber 1 + (pi/4) *
/1 where i is the imaginary unit.

c32in = (float _Conpl ex) c64in;

/1l Create the float conmplex value fromthe doubl e conpl ex

val ue.
c64out = cexp(c64in);
c32o0ut = cexpf(c32in);

/1 Call the conplex exponenti al
Il cexp(z) = cexp(x+iy) =e" (x +1i y) =e’x * (cos(y) +
sin(y))

printf("Wien z = %.7f + %.7f i, cexpf(z) = W.7f + %.7f i
\n"

,creal f(c32in), ci mgf(c32in),creal f(c32out), ci magf(c32o0ut));
printf("Wien z = %d2. 12f + 9%42. 12f i, cexp(z) = %2. 12f +
%2.12f i \n"

, creal (c64in), ci mag(c64in), creal (c64out), ci magf (c64out));

return O;

}

pronpt >i cc conplex_math.c
The output of a. out will look like this:

When z = 1. 0000000 + 0.7853982 i, cexpf(z) = 1.9221154 +
1.9221156 i

When z = 1. 000000000000 + 0.785398163397 i, cexp(z) =

1. 922115514080 + 1.922115514080

f) Note

_Conpl ex data types are supported in C but not in C++ programs.

173

Intel® C++ Compiler for Linux* Systems User's Guide

Exception Conditions

If you call a math function using argument(s) that may produce undefined results, an error number
is assigned to the system variable er r no. Math function errors are usually domain errors or range
errors.

Domain errorsresult from arguments that are outside the domain of the function. For example,
acos is defined only for arguments between -1 and +1 inclusive. Attempting to evaluate acos(-
2) oracos(3) results in a domain error, where the return value is QNaN.

Range errors occur when a mathematically valid argument results in a function value that
exceeds the range of representable values for the floating-point data type. Attempting to evaluate
exp(1000) results in a range error, where the return value is | NF.

When domain or range error occurs, the following values are assigned to er r no:
* domain error (EDOM): errno = 33
» range error (ERANGE): errno = 34

The following example shows how to read the er r no value for an EDOMand ERANGE error.

/'l errno.c

#i ncl ude <errno. h>
#i ncl ude <mat hi nf. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)

doubl e neg_one=-1.0;
doubl e zer0=0. 0;

/1 The natural |og of a negative nunmber is considered a
domain error - EDOM

printf("log(%) = % and errno(EDOM = %
\'n", neg_one, | og(neg_one), errno);

/1 The natural log of zero is considered a range error -
ERANGE

printf("log(%) = % and errno(ERANGE) = %
\n", zero, |l og(zero), errno);

The output of er r no. ¢ will look like this:

| og(-1. 000000e+00) = nan and errno(EDOV) = 33
| 0og(0. 000000e+00) = -inf and errno(ERANGE) = 34

For the math functions in this section, a corresponding value for er r no is listed when applicable.

174

Intel Math Library

Other Considerations

Some math functions are inlined automatically by the compiler. The functions actually inlined
may vary and may depend on any vectorization or processor-specific compilation options used.
For more information, see Criteria for Inline Expansion of Functions.

A change of the default precision control or rounding mode may affect the results returned by
some of the mathematical functions. See Floating-point Arithmetic Precision.

Depending on the data types used, some important compiler options include:

e -l ong_doubl e: Use this option when compiling programs that require support for the
| ong doubl e data type (80-bit floating-point). Without this option, compilation will be
successful, but | ong doubl e data types will be mapped to doubl e data types.

e -C99: Use this option when compiling programs that require support for _Conpl ex data
types.

175

Intel® C++ Compiler for Linux* Systems User's Guide

Math Functions
Trigonometric Functions

The Intel Math library supports the following trigonometric functions:

ACOS

ACOSD

ASIN

ASIND

ATAN

176

Description: The acos function returns the principal value of the inverse
cosine of X in the range [0, pi] radians for X in the interval [-1,1].

errno: EDOM, for [x| > 1

Calling interface:

doubl e acos(doubl e x);
| ong doubl e acosl (I ong doubl e x);
float acosf(float x);

Description: The acosd function returns the principal value of the inverse
cosine of X in the range [0,180] degrees for X in the interval [-1,1].

errno: EDOM, for [x| > 1

Calling interface:

doubl e acosd(doubl e x);
| ong doubl e acosdl (1 ong doubl e Xx);
float acosdf (float x);

Description: The asi n function returns the principal value of the inverse sine
of X in the range [-pi/2, +pi/2] radians for X in the interval [-1,1].

errno: EDOM, for [x|> 1

Calling interface:

doubl e asi n(doubl e x);
| ong doubl e asinl (I ong double x);
float asinf(float x);

Description: The asi nd function returns the principal value of the inverse sine
of X in the range [-90,90] degrees for X in the interval [-1,1].

errno: EDOM, for [x|> 1

Calling interface:

doubl e asi nd(doubl e x);
| ong doubl e asindl (1 ong double x);
float asindf(float Xx);

Description: The at an function returns the principal value of the inverse
tangent of X in the range [-pi/2, +pi/2] radians.

Calling interface:

doubl e atan(double x);
| ong doubl e atanl (I ong doubl e x);
float atanf(float x);

Intel Math Library

ATAN2

ATAND

ATAN2D

COS

COSD

COoT

Description: The at an2 function returns the principal value of the inverse
tangent of y/ X in the range [-pi, +pi] radians.

errno: EDOM, for x =0 and y=0

Calling interface:

doubl e atan2(doubl e x, double y);
| ong doubl e atan2l (1 ong doubl e x, |ong double y);
float atan2f(float x, float y);

Description: The at and function returns the principal value of the inverse
tangent of X in the range [-90,90] degrees.

Calling interface:

doubl e atand(doubl e x);
| ong doubl e atandl (1 ong doubl e x);
float atandf(float x);

Description: The at an2d function returns the principal value of the inverse
tangent of y/ X in the range [-180, +180] degrees.

errno: EDOM, forx=0

Calling interface:

doubl e atan2d(doubl e x, double y);
| ong doubl e atan2dl (1 ong double x, |ong double y);
float atan2df(float x, float y);

Description: The cos function returns the cosine of X measured in radians.
This function may be inlined with the Itanium® compiler.

Calling interface:

doubl e cos(doubl e x);
| ong doubl e cosl (1 ong doubl e x);
float cosf(float Xx);

Description: The cosd function returns the cosine of X measured in degrees.

Calling interface:

doubl e cosd(doubl e x);
| ong doubl e cosdl (I ong doubl e x);
float cosdf(float x);

Description: The cot function returns the cotangent of X measured in radians.
errno: ERANGE, for overflow conditions

Calling interface:

doubl e cot (doubl e x);
| ong doubl e cotl (Il ong double x);
float cotf(float x);

177

Intel® C++ Compiler for Linux* Systems User's Guide

COTD

SIN

SINCOS

SINCOSD

SIND

TAN

178

Description: The cot d function returns the cotangent of X measured in
degrees.

errno: ERANGE, for overflow conditions

Calling interface:

doubl e cotd(double x);
| ong doubl e cotdl (I ong double x);
float cotdf(float x);

Description: The si n function returns the sine of X measured in radians. This
function may be inlined with the Itanium® compiler.

Calling interface:

doubl e sin(double x);
| ong doubl e sinl (long double x);
float sinf(float x);

Description: The si ncos function returns both the sine and cosine of X
measured in radians. This function may be inlined with the Itanium® compiler.

Calling interface:

voi d sincos(doubl e x, double *sinval, double *cosval);
voi d sincosl (1 ong doubl e x, |ong double *sinval, |ong
doubl e *cosval);

void sincosf(float x, float *sinval, float *cosval);

Description: The si ncosd function returns both the sine and cosine of X
measured in degrees.

Calling interface:

voi d sincosd(doubl e x, double *sinval, double
*cosval);

voi d sincosdl (I ong double x, |ong double *sinval, |ong
doubl e *cosval);

void sincosdf(float x, float *sinval, float *cosval);

Description: The si nd function computes the sine of X measured in degrees.

Calling interface:

doubl e si nd(doubl e x);
| ong doubl e sindl (I ong double x);
float sindf(float x);

Description: The t an function returns the tangent of X measured in radians.

Calling interface:

doubl e tan(doubl e x);
| ong doubl e tanl (1 ong double x);
float tanf(float Xx);

Intel Math Library

TAND

Description: The t and function returns the tangent of X measured in degrees.
errno: ERANGE, for overflow conditions

Calling interface:

doubl e tand(doubl e x);
| ong doubl e tandl (I ong double x);
float tandf(float x);

Hyperbolic Functions

The Intel Math library supports the following hyperbolic functions:

ACOSH

ASINH

ATANH

COSH

Description: The acosh function returns the inverse hyperbolic cosine of X.
errno: EDOM, forx <1

Calling interface:

doubl e acosh(doubl e x);
| ong doubl e acoshl (1 ong doubl e Xx);
float acoshf(float x);

Description: The asi nh function returns the inverse hyperbolic sine of X.

Calling interface:

doubl e asi nh(doubl e x);
| ong doubl e asinhl (1 ong doubl e x);
float asinhf(float x);

Description: The at anh function returns the inverse hyperbolic tangent of X.

errno. EDOM, forx <1
errno. ERANGE, forx=1

Calling interface:

doubl e atanh(doubl e Xx);
| ong doubl e at anhl (1 ong doubl e x);
float atanhf(float x);

Description: The cosh function returns the hyperbolic cosine of x, (e* + €™)/2.
errno: ERANGE, for overflow conditions

Calling interface:

doubl e cosh(doubl e x);
| ong doubl e coshl (I ong doubl e x);
float coshf(float x);

179

Intel® C++ Compiler for Linux* Systems User's Guide

SINH
Description: The si nh function returns the hyperbolic sine of X, (e - €™)/2.
errno: ERANGE, for overflow conditions
Calling interface:

doubl e si nh(doubl e x);
| ong doubl e sinhl (I ong double x);
float sinhf(float x);

SINHCOSH

Description: The si nhcosh function returns both the hyperbolic sine and
hyperbolic cosine of X.

errno: ERANGE, for overflow conditions

Calling interface:

voi d sinhcosh(double x, float *sinval, float *cosval);
voi d sinhcoshl (1 ong double x, |ong double *sinval,

| ong doubl e *cosval);

voi d sinhcoshf (float x, float *sinval, float *cosval);

TANH

Description: The t anh function returns the hyperbolic tangent of X, (e* - ™) /
(e*+e™).

Calling interface:

doubl e tanh(doubl e x);
| ong doubl e tanhl (I ong doubl e x);
float tanhf(float x);

Exponential Functions

The Intel Math library supports the following exponential functions:
CBRT

Description: The cbrt function returns the cube root of X.

Calling interface:

doubl e cbrt (double x);
| ong double cbrtl (I ong double x);
float cbrtf(float x);

EXP

Description: The exp function returns € raised to the X power, e*. This
function may be inlined by the Itanium® compiler.

errno. ERANGE, for underflow and overflow conditions

Calling interface:

doubl e exp(double x);
| ong doubl e expl (1 ong doubl e x);
float expf(float x);

180

Intel Math Library

EXP10

EXP2

EXPM1

FREXP

HYPOT

Description: The exp10 function returns 10 raised to the X power, 10™.
errno: ERANGE, for underflow and overflow conditions

Calling interface:

doubl e expl0(doubl e x);
| ong doubl e expl0l (1 ong doubl e x);
float explOf (float x);

Description: The exp2 function returns 2 raised to the X power, 2.
errno: ERANGE, for underflow and overflow conditions

Calling interface:

doubl e exp2(double x);
| ong doubl e exp2l (I ong doubl e x);
float exp2f(float x);

Description: The expmil function returns e raised to the X power minus 1, €* -
1.

errno. ERANGE, for overflow conditions

Calling interface:

doubl e expmil(doubl e x);
| ong doubl e expnil (1 ong doubl e Xx);
float expmlf(float Xx);

Description: The f r exp function converts a floating-point number X into
signed normalized fraction in [1/2, 1) multiplied by an integral power of two.
The signed normalized fraction is returned, and the integer exponent stored at
location exp.

Calling interface:

doubl e frexp(double x, int *exp);
| ong doubl e frexp(long double x, int *exp);
float frexpf(float x, int *exp);

Description: The hypot function returns the square root of (X* + y?) .
errno. ERANGE, for overflow conditions

Calling interface:

doubl e hypot (doubl e x, double y);
| ong doubl e hypotl (1 ong double x, |ong double y);
float hypotf(float x, float y);

181

Intel® C++ Compiler for Linux* Systems User's Guide

ILOGB

Description: The i | ogb function returns the exponent of X base two as a
signed i nt value.

errno: ERANGE, forx=0

Calling interface:

int ilogb(double x);
int ilogbl(long double x);
int ilogbf(float x);

LDEXP

Description: The | dexp function returns x* 2", where exp is an integer
value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:

doubl e | dexp(doubl e x, int exp);
| ong doubl e | dexpl (1 ong double x, int exp);
float |dexpf(float x, int exp);

LOG

Description: The | og function returns the natural log of X, | n(x) . This
function may be inlined by the Itanium® compiler.

errno: EDOM, forx <0
errno: ERANGE, forx=0

Calling interface:

doubl e I og(doubl e x);
| ong doubl e | ogl (I ong double x);
float |ogf(float x);

LOG10

Description: The | 0g10 function returns the base-10 log of x, log;o(x). This
function may be inlined by the Itanium® compiler.

errno: EDOM, forx <0
errno: ERANGE, forx=0

Calling interface:

doubl e | 0g10(doubl e x);
| ong doubl e |1 0g10l (1 ong doubl e x);
float |oglOf (float x);

LOG1P

Description: The | oglp function returns the natural log of (x+1),1 n(x +
1).

errno: EDOM, forx <-1
errno: ERANGE, for x =-1

Calling interface:

doubl e | oglp(doubl e x);
| ong doubl e | oglpl (1 ong double x);
float |oglpf(float Xx);

182

Intel Math Library

LOG2

LOGB

POW

SCALB

SCALBN

Description: The | 0g2 function returns the base-2 log of X, logy(x).

errno: EDOM, forx <0
errno: ERANGE, forx=0

Calling interface:

doubl e | 0g2(doubl e x);
| ong doubl e | og2l (I ong double x);
float |og2f(float x;

Description: The | ogb function returns the signed exponent of X.
errno: EDOM, forx=0

Calling interface:

doubl e | ogb(doubl e x);
| ong doubl e | ogbl (I ong doubl e x);
float |ogbf(float x);

Description: The pow function returns X raised to the power of y, X”.
Calling interface:

errno: EDOM, forx=0and y <0
errno: EDOM, for x <0 and y is a non-integer
errno: ERANGE, for overflow conditions

doubl e pow(doubl e x, double y);
| ong doubl e pow (doubl e x, double y);
float powf(float x, float y);

Description: The scal b function returns X* 2”, where y is a floating-point
value.

errno. ERANGE, for underflow and overflow conditions

Calling interface:

doubl e scal b(doubl e x, double y);
| ong doubl e scal bl (1 ong doubl e x, |ong double y);
float scal bf (float x, float y);

Description: The scal bn function returns X* 2", where n is an integer value.
errno. ERANGE, for underflow and overflow conditions

Calling interface:

doubl e scal bn(double x, int n);
| ong doubl e scal bnl (Iong double x, int n);
float scal bnf(float x, int n);

183

Intel® C++ Compiler for Linux* Systems User's Guide

SCALBLN
Description: The scal bl n function returns x* 2", where n is a long integer
value.
errno: ERANGE, for underflow and overflow conditions
Calling interface:
doubl e scal bl n(double x, long int n);
| ong doubl e scal blnl (long double x, long int n);
float scalblnf(float x, long int n);
SQRT

Description: The sqrt function returns the correctly rounded square root.
errno: EDOM, forx <0
Calling interface:

doubl e sqgrt(double x);
| ong double sqrtl(long double x);
float sqgrtf(float x);

Special Functions

The Intel Math library supports the following special functions:
ANNUITY

Description: The annui t y function computes the present value factor for an
annuity, (1 - (1+x)“”) / x, where X is a rate and y is a period.

errno: ERANGE, for underflow and overflow conditions

Calling interface:

doubl e annuity(doubl e x, double y);
| ong doubl e annuity(doubl e x, double y);
float annuityf(float x, double y);

COMPOUND

Description: The conpound function computes the compound interest factor,
(1+x)”, where X is a rate and y is a period.

errno. ERANGE, for underflow and overflow conditions
Calling interface:

doubl e conpound(doubl e x, double y);
| ong doubl e conmpound(doubl e x, double y);
float conpoundf (float x, double y);

ERF
Description: The er f function returns the error function value.

Calling interface:

doubl e erf(double x);
| ong double erfl (long double x);
float erff(float x);

184

Intel Math Library

ERFC

GAMMA

GAMMA R

JO

J1

JN

Description: The er f ¢ function returns the complementary error function
value.

errno: ERANGE, for underflow conditions

Calling interface:

doubl e erfc(double x);
| ong double erfcl (long double x);
float erfcf(float x);

Description: The ganma function returns the value of the logarithm of the
absolute value of gamma.

errno: ERANGE, for overflow conditions

Calling interface:

doubl e gamma(doubl e x);
float gammaf (float Xx);

Description: The gamra_r function returns the value of the logarithm of the
absolute value of gamma. The sign of the gamma function is returned in the
integer Si gngam

Calling interface:

doubl e gamma_r (doubl e x, int *signgan);
float gammaf r(float x, int *signganj;

Description: Computes the Bessel function (of the first kind) of X with order 0.

Calling interface:

doubl e jO(doubl e x);
float jOf(float x);

Description: Computes the Bessel function (of the first kind) of X with order 1.

Calling interface:

doubl e j1(doubl e x);
float j1f (float x);

Description: Computes the Bessel function (of the first kind) of X with order n.

Calling interface:

doubl e jn(int n, double x);
float jnf(int n, float x);

185

Intel® C++ Compiler for Linux* Systems User's Guide

LGAMMA

LGAMMA_R

TGAMMA

YO

Y1l

186

Description: The | ganma function returns the value of the logarithm of the
absolute value of gamma.

errno: ERANGE, for overflow conditions

Calling interface:

doubl e | gamma(doubl e x);
| ong doubl e | gammal (1 ong doubl e x);
float | ganmaf(float x);

Description: The | ganma_r function returns the value of the logarithm of the
absolute value of gamma. The sign of the ganmma function is returned in the
integer Si ghgam

errno: ERANGE, for overflow conditions, x=0 or negative integers.
Calling interface:

doubl e | gamma_r (doubl e x, int *signgam;
| ong doubl e | ganma_r (doubl e x, int *signgam;
float | ganmaf_r(float x, int *signgam;

Description: The t ganma function computes the gamma function of X.
errno: EDOM, for x=0 or negative integers.
Calling interface:

doubl e t ganma(doubl e x);
| ong doubl e tgammal (1 ong doubl e x);
float tganmaf(float x);

Description: Computes the Bessel function (of the second kind) of X with order
0.

errno:. EDOM, forx <=0

Calling interface:

doubl e yO(doubl e x);
float yOf (float x);

Description: Computes the Bessel function (of the second kind) of X with order
1.

errno:. EDOM, forx <=0

Calling interface:

doubl e y1(doubl e x);
float ylf (float x);

Intel Math Library

YN

Description: Computes the Bessel function (of the second kind) of X with order
n.

errno: EDOM, forx <=0
Calling interface:

doubl e yn(int n, double x);
float ynf(int n, float x);

Nearest Integer Functions

The Intel Math library supports the following nearest integer functions:

CEIL

FLOOR

LLRINT

LLROUND

Description: The cei | function returns the smallest integral value not less than
X as a floating-point number. This function may be inlined with the Itanium®
compiler.

Calling interface:

doubl e ceil (doubl e x);
| ong double ceill (I ong double x);
float ceilf(float x);

Description: The f | oor function returns the largest integral value not greater
than X as a floating-point value. This function may be inlined with the Itanium®
compiler.

Calling interface:

doubl e fl oor(double x);
| ong double floorl (long double x);
float floorf(float Xx);

Description: The | | ri nt function returns the rounded integer value
(according to the current rounding direction) asal ong | ong int.

errno: ERANGE, for values too large

Calling interface:

long long int Ilrint(double x);
long long int Ilrintl(long double x);
long long int Ilrintf(float x);

Description: The | | r ound function returns the rounded integer value as a
long long int.

errno: ERANGE, for values too large
Calling interface:
I ong | ong int round(doubl e Xx);

[l
long long int Ilroundl (long double x);
long long int Ilroundf(float x);

187

Intel® C++ Compiler for Linux* Systems User's Guide

LRINT
Description: The | ri nt function returns the rounded integer value (according
to the current rounding direction) asal ong i nt.
Calling interface:
long int Irint(double x);
long int Irintl(long double x);
long int Irintf(float x);
LROUND
Description: The | r ound function returns the rounded integer value as a
| ong i nt. Halfway cases are rounded away from zero.
err no: ERANGE, for values too large
Calling interface:
long int |round(double x);
long int Iroundl (1 ong double x);
long int lroundf(float x);
MODF

Description: The nodf function returns the value of the signed fractional part
of X and stores the integral part in floating-point format in *i ptr .

Calling interface:

doubl e nodf (doubl e x, double *iptr);
| ong doubl e nmodfl (I ong double x, |ong double *iptr);
float nodff(float x, float *iptr);

NEARBYINT

Description: The near byi nt function returns the rounded integral value as a
floating-point number, using the current rounding direction.

Calling interface:

doubl e nearbyi nt (doubl e x);
| ong doubl e nearbyintl (1 ong double x);
float nearbyintf(float x);

RINT

Description: The ri nt function returns the rounded integral value as a
floating-point number, using the current rounding direction.

Calling interface:

doubl e rint(double x);
I ong double rintl(long double x);
float rintf(float x);

ROUND

Description: The r ound function returns the nearest integral value as a
floating-point number. Halfway cases are rounded away from zero.

Calling interface:

doubl e round(doubl e x);
| ong doubl e roundl (1 ong doubl e x);
float roundf(float x);

188

Intel Math Library

TRUNC

Description: The t r unc function returns the truncated integral value as a
floating-point number.

Calling interface:

doubl e trunc(doubl e x);
| ong doubl e truncl (1 ong double x);
float truncf(float x);

Remainder Functions

The Intel Math library supports the following remainder functions:

FMOD
Description: The f mod function returns the value X- n*y for integer n such
that if y is nonzero, the result has the same sign as X and magnitude less than the
magnitude of y.
errno: EDOM, forx=0
Calling interface:
doubl e frod(doubl e x, double y);
| ong doubl e fnodl (I ong double x, |ong double y);
float frodf(float x, float y);

REMAINDER
Description: The r emai nder function returns the value of X REM y as
required by the IEEE standard.
Calling interface:
doubl e remai nder (doubl e x, double y);
| ong doubl e renmi nderl (I ong doubl e x, |ong double y);
float remainderf(float x, float y);

REMQUO

Description: The r enquo function returns the value of X REM Y. In the
object pointed to by quO the function stores a value whose sign is the sign of
x/'y and whose magnitude is congruent modulo 2* to the magnitude of the
integral quotient of X/ y, where n is an implementation-defined integer greater
than or equal to 3.

Calling interface:

doubl e remgquo(doubl e x, double y, int *quo);

| ong doubl e remguol (1 ong doubl e x, long double y, int
*quo) ;

float remguof(float x, float y, int *quo);

189

Intel® C++ Compiler for Linux* Systems User's Guide

Miscellaneous Functions

The Intel Math library supports the following miscellaneous functions:

COPYSIGN

Description: The copysi gn function returns the value with the magnitude of
X and the sign of y.

Calling interface:

doubl e copysi gn(doubl e x, double y);
| ong doubl e copysignl (I ong double x, |ong double y);
float copysignf(float x, float y);

FABS
Description: The f abs function returns the absolute value of X.
Calling interface:
doubl e fabs(double x);
| ong doubl e fabsl (I ong double x);
float fabsf(float x);
FDIM
Description: The f di mfunction returns the positive difference value, x- y (for
X >Yy) or +0 (for X <y).
errno: ERANGE, for values too large
Calling interface:
doubl e fdi m(doubl e x, double y);
| ong double fdim (Il ong double x, |ong double y);
float fdinf(float x, float y);
FMA
Description: The f nma functions return (X*y) +z.
Calling interface:
doubl e frma(doubl e x, double y, |ong double z);
| ong double fmal (1 ong double x, long double y, |ong
doubl e z);
float frmaf (float x, float y, |long double z);
FMAX

Description: The f max function returns the maximum numeric value of its
arguments.

Calling interface:

doubl e fmax(doubl e x, double y);
| ong doubl e fmaxl (I ong double x, |ong double y);
float frmaxf(float x, float y)

190

Intel Math Library

FMIN
Description: The f mi n function returns the minimum numeric value of its
arguments.
Calling interface:
doubl e fm n(doubl e x, double y);
| ong double fninl(long double x, |ong double y);
float fmnf(float x, float y);
FPCLASSIFY
Description: The f pcl assi fy function returns the value of the number
classification macro appropriate to the value of its argument.
Calling interface:
doubl e fpcl assify(double x);
| ong doubl e fpclassifyl(long double x);
float fpclassifyf(float x);
ISFINITE
Description: The i sfi ni t e function returns 1 if X is not a NaN or +/- infinity.
Otherwise 0 is returned..
Calling interface:
int isfinite(double x);
int isfinitel (long double x);
int isfinitef(float x);
ISGREATER
Description: The i sgr eat er function returns 1 if X is greater than y. This
function does not raise the invalid floating-point exception.
Calling interface:
int isgreater(double x, double y);
int isgreaterl(long double x, |long double y);
int isgreaterf(float x, float y);
ISGREATEREQUAL
Description: The i sgr eat er equal function returns 1 if X is greater than or
equal to y. This function does not raise the invalid floating-point exception.
Calling interface:
i nt isgreaterequal (double x, double y);
int isgreaterequall (long double x, |ong double y);
int isgreaterequal f(float x, float y);
ISINF

Description: The i si nf function returns a non-zero value if and only if its
argument has an infinite value.

Calling interface:

int isinf(double x);
int isinfl(long double Xx);
isinff(float x);

191

Intel® C++ Compiler for Linux* Systems User's Guide

ISLESS
Description: The i sl ess function returns 1 if X is less than y. This function
does not raise the invalid floating-point exception.
Calling interface:
int isless(double x, double y);
int islessl(long double x, |ong double y);
int islessf(float x, float y);
ISLESSEQUAL
Description: The i sl essequal function returns 1 if X is less than or equal to
y. This function does not raise the invalid floating-point exception.
Calling interface:
i nt islessequal (double x, double y);
int islessequall (long double x, |ong double y);
int islessequal f(float x, float y);
ISLESSGREATER
Description: The i sl essgr eat er function returns 1 if X is less than or
greater than y. This function does not raise the invalid floating-point exception.
Calling interface:
int islessgreater(double x, double y);
int islessgreaterl (long double x, |ong double y);
int islessgreaterf(float x, float y);
ISNAN
Description: The i snan function returns a non-zero value if and only if X has
a NaN value.
Calling interface:
i nt isnan(double x);
int isnanl (long double x);
int isnanf(float x);
ISNORMAL
Description: The i snor mal function returns a non-zero value if and only if X
is normal.
Calling interface:
int isnormal (double x);
int isnormall (long double Xx);
int isnormal f(float x);
ISUNORDERED

192

Description: The i sunor der ed function returns 1 if either X or y is a NaN.
This function does not raise the invalid floating-point exception.

Calling interface:

i nt isunordered(double x, double y);
i nt isunorderedl (1 ong double x, |ong double y);
int isunorderedf(float x, float y);

Intel Math Library

NEXTAFTER

Description: The next af t er function returns the next representable value in
the specified format after X in the direction of y.

errno: ERANGE, for values too large

Calling interface:

doubl e nextafter(double x, double y);
| ong doubl e nextafterl (long double x, |ong double y);
float nextafterf(float x, float y);

NEXTTOWARD

Description: The next t owar d function returns the next representable value
in the specified format after X in the direction of y. If X equals y, then the
function returns y converted to the type of the function.

errno: ERANGE, for values too large

Calling interface:

doubl e nexttoward(doubl e x, double y);
| ong doubl e nexttowardl (I ong doubl e x, |ong double y);
float nexttowardf (float x, float y);

SIGNBIT
Description: The si gnbi t function returns a non-zero value if and only if the
sign of X is negative.
Calling interface:
i nt signbit(double x);
int signbitl(long double x);
int signbitf(float x);
SIGNIFICAND

Description: The si gni fi cand function returns the significand of X in the
interval [1,2). For X equal to zero, NaN, or +/- infinity, the original X is returned.

Calling interface:

doubl e significand(double x);
| ong doubl e significandl (1 ong double x);
float significandf(float x);

Complex Functions

The Intel Math library supports the following complex functions:

CABS

Description: The cabs function returns the complex absolute value of z.

Calling interface:

doubl e cabs(doubl e _Conplex z);
| ong doubl e cabs(long double _Complex z);
float cabsf(float _Conplex z);

193

Intel® C++ Compiler for Linux* Systems User's Guide

CACOS
Description: The cacos function returns the complex inverse cosine of Z.
Calling interface:
doubl e _Conpl ex cacos(doubl e _Conplex z);
| ong doubl e _Conpl ex cacosl (I ong doubl e _Conplex z);
float _Conpl ex cacosf(fl oat _Conplex z);

CACOSH
Description: The cacosh function returns the complex inverse hyperbolic
cosine of z.
Calling interface:
doubl e _Conpl ex cacosh(doubl e _Conpl ex z);
| ong doubl e _Conpl ex cacoshl (1 ong doubl e _Conpl ex z);
fl oat _Conplex cacoshf(float _Conplex z);

CARG
Description: The car g function returns the value of the argument in the
interval [-pi, +pi].
Calling interface:
doubl e carg(doubl e _Conplex z);
| ong doubl e cargl (I ong doubl e _Conplex z);
float cargf(float _Conplex z);

CASIN
Description: The casi n function returns the complex inverse sine of z.
Calling interface:
doubl e _Conpl ex casi n(doubl e _Conplex z);
| ong doubl e _Conpl ex casinl (long double Conplex z);
float _Conpl ex casinf(float _Conplex z);

CASINH
Description: The casi nh function returns the complex inverse hyperbolic sine
ofz.
Calling interface:
doubl e _Conpl ex casi nh(doubl e _Conpl ex z);
| ong doubl e _Conpl ex casinhl (1 ong double _Conplex z);
float _Conpl ex casi nhf(float _Conplex z);

CATAN

Description: The cat an function returns the complex inverse tangent of z.
Calling interface:

doubl e _Conpl ex catan(doubl e _Conplex z);
| ong doubl e _Conpl ex catanl (I ong doubl e _Conplex z);
float _Conplex catanf(float _Conplex z);

194

Intel Math Library

CATANH

CCOS

CCOSH

CEXP

CEXP10

CIMAG

Description: The cat anh function returns the complex inverse hyperbolic
tangent of Z.

Calling interface:

doubl e _Conmpl ex catanh(doubl e _Conplex z);
| ong doubl e _Conpl ex catanhl (I ong double _Conplex z);
float _Conpl ex catanhf(float _Conplex z);

Description: The ccos function returns the complex cosine of z.

Calling interface:

doubl e _Conpl ex ccos(double _Complex z);
| ong doubl e _Conplex ccosl (Il ong double _Conplex z);
float _Conpl ex ccosf(float _Conplex z);

Description: The ccosh function returns the complex hyperbolic cosine of z.

Calling interface:

doubl e _Compl ex ccosh(doubl e Conplex z);
| ong doubl e _Conpl ex ccoshl (1 ong doubl e _Conplex z);
float _Conpl ex ccoshf(float _Conplex z);

Description: The cexp function computes e”.

Calling interface:

doubl e _Conpl ex cexp(double _Conplex z);
| ong doubl e _Conpl ex cexpl (I ong double _Conplex z);
float _Conpl ex cexpf(float _Conplex z);

Description: The cexpl10 function computes 10°.

Calling interface:

doubl e _Conpl ex cexplO(doubl e _Conplex z);
| ong doubl e _Conpl ex cexplOl (I ong doubl e _Conplex z);
float _Conpl ex cexplOf (float _Conplex z);

Description: The ci mag function returns the imaginary part value of z.

Calling interface:

doubl e ci mag(doubl e _Conpl ex z);
| ong doubl e ci mag(l ong doubl e _Conplex z);
float cimgf(float _Conplex z);

195

Intel® C++ Compiler for Linux* Systems User's Guide

CIS

CISD

CLOG

CLOG2

CONJ

CPOW

196

Description: The ci s function returns the cosine and sine (as a complex value)
of z measured in radians.

Calling interface:

doubl e _Conpl ex ci s(double z);
| ong doubl e Conplex cis(long double z);
float _Conplex cis(float z);

Description: The ci s function returns the cosine and sine (as a complex value)
of z measured in degrees.

Calling interface:

doubl e _Conpl ex ci s(double z);
| ong double Conplex cis(long double z);
float _Conplex cis(float z);

Description: The ¢l og function returns the complex natural logarithm of z.

Calling interface:

doubl e _Compl ex cl og(double _Conplex z);
| ong doubl e _Conplex clogl(long double _Conplex z);
float _Conplex clogf(float _Conplex z);

Description: The ¢l 092 function returns the complex logarithm base 2 of z.

Calling interface:

doubl e Compl ex cl og2(doubl e _Conplex z);
| ong doubl e _Conpl ex clog2l (I ong double Conplex z);
float _Conpl ex cl og2f(float _Conplex z);

Description: The conj function returns the complex conjugate of z, by
reversing the sign of its imaginary part.

Calling interface:

doubl e _Conpl ex conj (doubl e _Compl ex z);
| ong doubl e _Conplex conj(long double _Conplex z);
float _Conplex conjf(float _Conplex z);

Description: The cpow function returns the complex power function, X’ .
Calling interface:

doubl e _Conpl ex cpow(doubl e _Conpl ex x, double

_Conpl ex y);

| ong doubl e Conplex cpow (I ong doubl e _Conpl ex x,
doubl e _Conpl ex y);

float _Conpl ex cpowf (float _Conplex x, float _Conplex

y),

Intel Math Library

CPROJ

CREAL

CSIN

CSINH

CSQRT

CTAN

CTANH

Description: The cpr oj function returns a projection of z onto the Riemann
sphere.

Calling interface:

doubl e _Conpl ex cproj (doubl e Conplex z);
| ong doubl e _Conplex cproj(long double _Conplex z);
float _Conplex cprojf(float _Complex z);

Description: The cr eal function returns the real part value of z.

Calling interface:

doubl e creal (doubl e _Conpl ex z);
| ong doubl e creal (I ong doubl e _Conplex z);
float creal f(float _Conplex z);

Description: The csi n function returns the complex sine of z.

Calling interface:

doubl e _Conmpl ex csin(double _Conplex z);
| ong doubl e _Conplex csinl(long double _Conplex z);
float _Conplex csinf(float _Conplex z);

Description: The csi nh function returns the complex hyperbolic sine of z.

Calling interface:

doubl e _Conpl ex csi nh(doubl e _Conplex z);
| ong doubl e _Conplex csinl(long double _Conplex z);
float _Conpl ex csinhf(float _Conplex z);

Description: The csqrt function returns the complex square root of z.

Calling interface:

doubl e _Conpl ex csqgrt (doubl e _Conplex z);
| ong double Conplex csqrtl(long double Conplex z);
float _Conplex csqrtf(float _Conplex z);

Description: The ct an function returns the complex tangent of z.

Calling interface:

doubl e _Compl ex ctan(double _Conplex z);
| ong doubl e _Conplex ctanl (Il ong double _Conplex z);
float _Conplex ctanf(float _Conplex z);

Description: The ct anh function returns the complex hyperbolic tangent of z.

Calling interface:

doubl e _Compl ex ctanh(doubl e _Conplex z);
| ong doubl e _Conpl ex ctanhl (I ong doubl e Conplex z);
float _Conpl ex ctanhf(float _Conplex z);

197

Intel® C++ Compiler for Linux* Systems User's Guide

C99 Macros

The Intel Math library and mat hi nf . h header file support the following C99 macros:
int fpclassify(x);

int isfinite(x);

int isgreater(x, Yy);

int isgreaterequal (x, Yy);
int isinf(x);

int isless(x, y);

int islessequal (x, y);
int islessgreater(x, y);
int isnan(x);

int isnormal (x);

int isunordered(x, Yy);

int signbit(x);

See also, Miscellaneous Functions.

198

Intel® C++ Intrinsics Reference

Introduction

The Intel® Pentium® 4 processor and other Intel processors have instructions to enable
development of optimized multimedia applications. The instructions are implemented through
extensions to previously implemented instructions. This technology uses the single instruction,
multiple data (SIMD) technique. By processing data elements in parallel, applications with media-
rich bit streams are able to significantly improve performance using SIMD instructions. The
Intel® Itanium® processor also supports these instructions.

The most direct way to use these instructions is to inline the assembly language instructions into
your source code. However, this can be time-consuming and tedious, and assembly language
inline programming is not supported on all compilers. Instead, Intel provides easy implementation
through the use of API extension sets referred to as intrinsics.

Intrinsics are special coding extensions that allow using the syntax of C function calls and C
variables instead of hardware registers. Using these intrinsics frees programmers from having to
program in assembly language and manage registers. In addition, the compiler optimizes the
instruction scheduling so that executables run faster.

In addition, the native intrinsics for the Itanium processor give programmers access to Itanium
instructions that cannot be generated using the standard constructs of the C and C++ languages.
The Intel® C++ Compiler also supports general purpose intrinsics that work across all IA-32 and
Itanium-based platforms.

For more information on intrinsics, please refer to the following publications:

Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual,
Intel Corporation, doc. number 243191

199

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsics Availability on Intel Processors

Processors: MMX™ Streaming Streaming Itanium
Technology SIMD SIMD Processor
Intrinsics Extensions Extensions 2 | Instructions

Itanium X X N/A X

Processor

Pentium 4 X X X N/A

Processor

Pentium IIT X X N/A N/A

Processor

Pentium II X N/A N/A N/A

Processor

Pentium with X N/A N/A N/A

MMX

Technology

Pentium Pro N/A N/A N/A N/A

Processor

Pentium N/A N/A N/A N/A

Processor

Benefits of Using Intrinsics

The major benefit of using intrinsics is that you now have access to key features that are not
available using conventional coding practices. Intrinsics enable you to code with the syntax of C
function calls and variables instead of assembly language. Most MMX™ technology, Streaming
SIMD Extensions, and Streaming SIMD Extensions 2 intrinsics have a corresponding C intrinsic
that implements that instruction directly. This frees you from managing registers and enables the
compiler to optimize the instruction scheduling.

The MMX technology and Streaming SIMD Extension instructions use the following new
features:

* new Registers--Enable packed data of up to 128 bits in length for optimal SIMD processing
* new Data Types--Enable packing of up to 16 elements of data in one register

The Streaming SIMD Extensions 2 intrinsics are defined only for IA-32, not for Itanium®-based
systems. Streaming SIMD Extensions 2 operate on 128 bit quantities - 2 64-bit double precision
floating point values. The Itanium architecture does not support parallel double precision
computation, so Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

200

Intel® C++ Intrinsics Reference

New Registers

A key feature provided by the architecture of the processors are new register sets. The MMX
instructions use eight 64-bit registers (mMD to N7) which are aliased on the floating-point stack
registers.

MMX™ Technology Registers

Tag Werd MMZE™ Technology Registers
1 i) 63 0
Pt hat &
]
OMosE=2

Streaming SIMD Extensions Registers

The Streaming SIMD Extensions use eight 128-bit registers (Xm0 to X /).

Streaming Sl D Extension Registers
124 o

HhihiC

xhana ¥

CIMOSE3S

These new data registers enable the processing of data elements in parallel. Because each register
can hold more than one data element, the processor can process more than one data element
simultaneously. This processing capability is also known as single-instruction multiple data
processing (SIMD).

For each computational and data manipulation instruction in the new extension sets, there is a
corresponding C intrinsic that implements that instruction directly. This frees you from managing
registers and assembly programming. Further, the compiler optimizes the instruction scheduling so
that your executable runs faster.

ff—t_) Note

The MMand XMMregisters are the SIMD registers used by the IA-32 platforms to implement MMX
technology and Streaming SIMD Extensions/Streaming SIMD Extensions 2 intrinsics. On the
Itanium-based platforms, the MMX and Streaming SIMD Extension intrinsics use the 64-bit
general registers and the 64-bit significand of the 80-bit floating-point register.

Data Types

Intrinsic functions use four new C data types as operands, representing the new registers that are
used as the operands to these intrinsic functions. The table below shows the new data type
availability marked with "X".

201

Intel® C++ Compiler for Linux* Systems User's Guide

Data Types Available

New Data | MMX™ Streaming SIMD | Streaming SIMD | Itanium®
Type Technology Extensions Extensions 2 Processor
__nb4 X X X X

_ nl28 N/A X X X
__m28d |N/A N/A X X

_ ml28i | N/A N/A X X

__mo64 Data Type

The __ 64 data type is used to represent the contents of an MMX register, which is the register
that is used by the MMX technology intrinsics. The __ 64 data type can hold eight 8-bit values,
four 16-bit values, two 32-bit values, or one 64-bit value.

__m128 Data Types

The __ml28 data type is used to represent the contents of a Streaming SIMD Extension register
used by the Streaming SIMD Extension intrinsics. The il 28 data type can hold four 32-bit
floating values.

The ___ml28d data type can hold two 64-bit floating-point values.

The ___ml28i data type can hold sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit integer
values.

The compiler aligns __nl28 local and global data to 16-byte boundaries on the stack. To align
i nteger,fl oat, ordoubl e arrays, you can use the declspec statement.

Data Types Usage Guidelines

Since these new data types are not basic ANSI C data types, you must observe the following usage
restrictions:

* Use new data types only on either side of an assignment, as a return value, or as a parameter.
You cannot use it with other arithmetic expressions (+, -, etc).

» Use new data types as objects in aggregates, such as unions to access the byte elements and
structures.

* Use new data types only with the respective intrinsics described in this documentation. The
new data types are supported on both sides of an assignment statement: as parameters to a
function call, and as a return value from a function call.

202

Intel® C++ Intrinsics Reference

Naming and Usage Syntax

Most of the intrinsic names use a notational convention as follows:

_mm<intrin_op> <suffix>

sub for subtraction.

<i ntrin_op> | Indicates the intrinsics basic operation; for example, add for addition and

<suffix>

* s single-precision floating point
* d double-precision floating point
e 1128 signed 128-bit integer

* i 64 signed 64-bit integer

* U64 unsigned 64-bit integer

e i 32 signed 32-bit integer

¢ U32 unsigned 32-bit integer

e 116 signed 16-bit integer

e U16 unsigned 16-bit integer

* i 8 signed 8-bit integer

e U8 unsigned 8-bit integer

Denotes the type of data operated on by the instruction. The first one or two
letters of each suffix denotes whether the data is packed (p), extended
packed (ep), or scalar (S). The remaining letters denote the type:

A number appended to a variable name indicates the element of a packed object. For example, r O
is the lowest word of r . Some intrinsics are "composites" because they require more than one

instruction to implement them.

The packed values are represented in right-to-left order, with the lowest value being used for

scalar operations. Consider the following example operation:
double a[2] = {1.0, 2.0};

_ nml28d t = nmml oad _pd(a);

The result is the same as either of the following:

_ nml28d t _mmset _pd(2.0, 1.0);

_ ml28d t _mmsetr_pd(1.0, 2.0);

In other words, the X mmregister that holds the value t will look as follows:

137 i
[0 10]

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics require their

arguments to be immediates (constant integer literals).

203

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Syntax
To use an intrinsic in your code, insert a line with the following syntax:
data_type intrinsic_name (paraneters)
Where,

data_t ype Is the return data type, which can be either voi d, i nt, nb4,
_ 28, ml28d, ml28i,_ i nt 64. Intrinsics that can be
implemented across all IA may return other data types as well, as
indicated in the intrinsic syntax definitions.

i ntrinsic_nane |Is the name of the intrinsic, which behaves like a function that you can
use in your C++ code instead of inlining the actual instruction.

paraneters Represents the parameters required by each intrinsic.

Intrinsics Implementation Across All IA

The intrinsics in this section function across all IA-32 and Itanium®-based platforms. They are
offered as a convenience to the programmer. They are grouped as follows:

* Integer Arithmetic Related
* Floating-Point Related
* String and Block Copy Related

e Miscellaneous

Integer Arithmetic Related

Intrinsic Description

i nt abs(int) Returns the absolute value of an
integer.

| ong | abs(I ong) Returns the absolute value of a

long integer.

unsigned long _lrotl (unsigned |ong Rotates bits left for an unsigned
val ue, int shift) long integer.

unsigned long _Irotr(unsigned |ong Rotates bits right for an unsigned
val ue, int shift) long integer.

unsigned int _ _rotl (unsigned int Rotates bits left for an unsigned
val ue, I nt shi ft) integer'

unsigned int __rotr(unsigned int Rotates bits right for an unsigned
Va.l Ue, I nt Sh| ft) integer.

204

Intel® C++ Intrinsics Reference

Ej Note

Passing a constant shift value in the rotate intrinsics results in higher performance.

Floating-point Related

Intrinsic

Description

doubl e fabs(doubl e)

Returns the absolute value of a floating-point value.

doubl e I og(doubl e)

Returns the natural logarithm In(x), x>0, with
double precision.

float |ogf(float)

Returns the natural logarithm In(x), x>0, with single
precision.

doubl e | 0g10(doubl e)

Returns the base 10 logarithm log10(x), x>0, with
double precision.

float | oglof(fl oat)

Returns the base 10 logarithm log10(x), x>0, with
single precision.

doubl e exp(doubl e)

Returns the exponential function with double
precision.

fl oat expf(float)

Returns the exponential function with single
precision.

doubl e pow(doubl e, double) |Returns the value of x to the power y with double
precision.
float powf (float, float) Returns the value of x to the power y with single

precision.

doubl e si n(doubl e)

Returns the sine of x with double precision.

float sinf(float)

Returns the sine of x with single precision.

doubl e cos(doubl e)

Returns the cosine of x with double precision.

float cosf(float)

Returns the cosine of x with single precision.

doubl e tan(doubl e)

Returns the tangent of x with double precision.

float tanf(float)

Returns the tangent of x with single precision.

doubl e acos(doubl e)

Returns the arccosine of x with double precision

fl oat acosf(fl oat)

Returns the arccosine of x with single precision

205

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic

Description

doubl e acosh(doubl e)

Compute the inverse hyperbolic cosine of the
argument with double precision.

fl oat acoshf (fl oat)

Compute the inverse hyperbolic cosine of the
argument with single precision.

doubl e asi n(doubl e)

Compute arc sine of the argument with double
precision.

fl oat asinf(float)

Compute arc sine of the argument with single
precision.

doubl e asi nh(doubl e)

Compute inverse hyperbolic sine of the argument
with double precision.

fl oat asinhf(fl oat)

Compute inverse hyperbolic sine of the argument
with single precision.

doubl e at an(doubl e)

Compute arc tangent of the argument with double
precision.

float atanf(float)

Compute arc tangent of the argument with single
precision.

doubl e atanh(doubl e)

Compute inverse hyperbolic tangent of the argument
with double precision.

fl oat atanhf(fl oat)

Compute inverse hyperbolic tangent of the argument
with single precision.

fl oat cabs(double)**

Computes absolute value of complex number.

doubl e ceil (doubl e)

Computes smallest integral value of double
precision argument not less than the argument.

float ceil f(float)

Computes smallest integral value of single precision
argument not less than the argument.

doubl e cosh(doubl e)

Computes the hyperbolic cosine of double precison
argument.

fl oat coshf(fl oat)

Computes the hyperbolic cosine of single precison
argument.

fl oat fabsf(float)

Computes absolute value of single precision
argument.

206

Intel® C++ Intrinsics Reference

Intrinsic

Description

doubl e fl oor (doubl e)

Computes the largest integral value of the double
precision argument not greater than the argument.

float floorf(float)

Computes the largest integral value of the single
precision argument not greater than the argument.

doubl e fnod(doubl e)

Computes the floating-point remainder of the
division of the first argument by the second
argument with double precison.

fl oat frodf (float)

Computes the floating-point remainder of the
division of the first argument by the second
argument with single precison.

doubl e hypot (doubl e,
doubl e)

Computes the length of the hypotenuse of a right
angled triangle with double precision.

fl oat hypotf (fl oat)

Computes the length of the hypotenuse of a right
angled triangle with single precision.

doubl e rint(double)

Computes the integral value represented as double
using the IEEE rounding mode.

float rintf(float)

Computes the integral value represented with single
precision using the IEEE rounding mode.

doubl e si nh(doubl e)

Computes the hyperbolic sine of the double
precision argument.

float sinhf(float)

Computes the hyperbolic sine of the single precision
argument.

float sqrtf(float)

Computes the square root of the single precision
argument.

doubl e t anh(doubl e)

Computes the hyperbolic tangent of the double
precision argument.

float tanhf(float)

Computes the hyperbolic tangent of the single
precision argument.

* Not implemented on Itanium®-based systems.

** doubl e in this case is a complex number made up of two single precision (32-bit floating

point) elements (real and imaginary parts).

207

Intel® C++ Compiler for Linux* Systems User's Guide

String and Block Copy Related

The following are not implemented as intrinsics on Itanium®-based platforms.

Intrinsic Description

char *_strset(char *, _int32) Sets all characters in a string to a
fixed value.

void *nmenmcnp(const void *cs, const void | Compares two regions of memory.
“ct, size_t n) Return <0 if cs<ct , 0 if cs=ct ,
or >0 if cs>ct .

voi d *megmpy(voi d *s, const void *ct, Copies from memory. Returns S.
size t n

void *nemset(void * s, int c, size_t n) | Setsmemory to a fixed value.
Returns s.

char *strcat(char * s, const char * ct) | Appends to a string. Returns S.

int *strcnp(const char *, const char *) | Compares two strings. Return <0
ifcs<ct,0ifcs=ct, or >0 if
cs>ct .

char *strcpy(char * s, const char * ct) | Copies a string. Returns S.

size_t strlen(const char * cs) Returns the length of string CS.

int strncnp(char *, char *, int) Compare two strings, but only
specified number of characters.

int strncpy(char *, char *, int) Copies a string, but only specified
number of characters.

Intrinsic Functions

The intrinsic functions listed below are common to IA-32 and the Itanium® architecture.

Intrinsic Description
void * _alloca(int) Allocates the buffers.
int _setjnp(jnp_buf)* A fast version of set j np() , which bypasses the

termination handling. Saves the callee-save
registers, stack pointer and return address.

_exception_code(voi d) Returns the exception code.

_exception_info(void) Returns the exception information.

208

Intel® C++ Intrinsics Reference

Intrinsic Description

_abnormal _term nati on(voi d) | Can be invoked only by termination handlers.
Returns TRUE if the termination handler is invoked
as a result of a premature exit of the corresponding
try-finally region.

void _enabl e() Enables the interrupt.
void _disable() Disables the interrupt.
int _bswap(int) Intrinsic that maps to the IA-32 instruction BSWAP

(swap bytes). Convert little/big endian 32-bit
argument to big/little endian form

int _in_byte(int) Intrinsic that maps to the TA-32 instruction | N.
Transfer data byte from port specified by argument.

int _in_dword(int) Intrinsic that maps to the IA-32 instruction | N.
Transfer double word from port specified by
argument.

int _in_word(int) Intrinsic that maps to the IA-32 instruction | N.

Transfer word from port specified by argument.

int _inp(int) Same as _i n_byt e

int _inpd(int) Sameas i n_dword

int _inpw(int) Same as _i n_wor d

int _out_byte(int, int) Intrinsic that maps to the IA-32 instruction OUT.

Transfer data byte in second argument to port
specified by first argument.

int _out_dword(int, int) Intrinsic that maps to the IA-32 instruction OUT.
Transfer double word in second argument to port
specified by first argument.

int _out_word(int, int) Intrinsic that maps to the IA-32 instruction OUT.
Transfer word in second argument to port specified
by first argument.

int _outp(int, int) Same as _out _byte

int _outpd(int, int) Same as _out _dwor d

int _outpw(int, int) Same as _out _wor d

209

Intel® C++ Compiler for Linux* Systems User's Guide

MMX™ Technology Intrinsics
Support for MMX™ Technology

MMX™ technology is an extension to the Intel architecture (IA) instruction set. The MMX
instruction set adds 57 opcodes and a 64-bit quadword data type, and eight 64-bit registers. Each
of the eight registers can be directly addressed using the register names N0 to M7

The prototypes for MMX technology intrinsics are in the mmi nt ri n. h header file.

The EMMS Instruction: Why You Need It

Using EMVE is like emptying a container to accommodate new content. For instance, MMX™
instructions automatically enable an FP tag word in the register to enable use of the ___n64 data
type. This resets the FP register set to alias it as the MMX register set. To enable the FP register
set again, reset the register state with the EMVS instruction or via the _mm enpt y() intrinsic.

Why You Need EMMS to Reset After an MMX™ Instruction

MK Insbuction Regiskers Mesd = oy Daka lppes

il [

w4 Daka Ty pes

FP Irstnciion Regislers Nesd o ba Rl o Accegl
FP Dala hipes of 32 84 and 80 bk
Ju il FF R g lesy
FPTag 0 0 F -?'.l-.‘_-,}] &
Fpo
FET
______ gty) Clsars B PP Tag Wiord and Sfows FP Daba Ty pes in Flagishes s Again

LReIeEn

&Caution

Failure to empty the multimedia state after using an MMX instruction and before using a floating-
point instruction can result in unexpected execution or poor performance.

EMMS Usage Guidelines
The guidelines when to use EMVE are:

* Do not use on Itanium®-based systems. There are no special registers (or overlay) for the
MMX™ instructions or Streaming SIMD Extensions on Itanium-based systems even though
the intrinsics are supported.

* Use_nm enpty() after an MMX instruction if the next instruction is a floating-point (FP)
instruction -- for example, before calculations on f | oat , doubl e or| ong doubl e. You
must be aware of all situations when your code generates an MMX instruction with the
Intel® C++ Compiler, i.e.:

210

Intel® C++ Intrinsics Reference

* when using an MMX technology intrinsic

* when using Streaming SIMD Extension integer intrinsics that use the __ 64
data type

» when referencing an __ 64 data type variable
* when using an MMX instruction through inline assembly

* Donotuse _mm enpty() before an MMX instruction, since using _nm enpt y() before
an MMX instruction incurs an operation with no benefit (no-op).

* Use different functions for operations that use FP instructions and those that use MMX
instructions. This eliminates the need to empty the multimedia state within the body of a
critical loop.

e Use_nm enpty() during runtime initialization of __ 64 and FP data types. This ensures
resetting the register between data type transitions.

e See the "Correct Usage" coding example below.

Incorrect Usage Correct Usage
__nbB4 x = mpaddd(y, z); |_nmb4 x = mpaddd(y, z);
loat f = init(); float f = (_mmenpty(), init());

For more documentation on EMMS, visit the http://developer.intel.com Web site.

MMX™ Technology General Support Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmi nt ri n. h header file.

Intrinsic Alternate Corresponding | Operation | Signed | Saturation

Name Name Instruction

_menpty _mm enpty EMVS Empty MM | -- -
state

~mfromint |_mmecvtsi32_si64 |[MOVD Convert - --
fromi nt

_mto_int _mm cvtsi64_si32 |MOVD Convert -- --
fromi nt

_m packsswb | _nm packs_pi 16 PACKSSV\B Pack Yes Yes

_m packssdw |_nm packs_pi 32 PACKSSDW Pack Yes Yes

_m packuswb |_nm packs_pul6 PACKUSV\B Pack No Yes

_m punpckhbw| _nm unpackhi _pi 8 | PUNPCKHBW Interleave | -- -

_m punpckhwd | _nmm unpackhi _pi 16 | PUNPCKHW\D Interleave | -- --

_m punpckhdqg | _mm unpackhi _pi 32 | PUNPCKHDQ Interleave | -- --

211

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Alternate Corresponding | Operation | Signed | Saturation
Name Name Instruction

_m punpckl bw|_nmm unpackl o_pi 8 | PUNPCKLBW Interleave | -- --

_m punpckl wd | _nmm unpackl o_pi 16 | PUNPCKLWD Interleave | -- --

_m punpckl dg | _nmm unpackl o_pi 32 | PUNPCKLDQ Interleave | -- --

void _menpty(void)

__nb4

Empty the multimedia state.

i)

Convert the integer objecti to a 64-bit __ B4 object. The integer value is zero-
extended to 64 bits.

_mfrom.int(int

int _mto int(__n64 m

B4

n64

B4

n64

n64

n64

n64

n64

212

Convert the lower 32 bits of the __ 64 object mto an integer.
_m packsswb(__nm64 nil, _ b4 nR)

Pack the four 16-bit values from ml into the lower four 8-bit values of the result
with signed saturation, and pack the four 16-bit values from n® into the upper
four 8-bit values of the result with signed saturation.

_m packssdw(__nm64 nil, _ nb64 nR)

Pack the two 32-bit values from nl into the lower two 16-bit values of the result
with signed saturation, and pack the two 32-bit values from n® into the upper
two 16-bit values of the result with signed saturation.

_m packuswb(__nm64 nil, _ b4 nP)

Pack the four 16-bit values from ml into the lower four 8-bit values of the result
with unsigned saturation, and pack the four 16-bit values from n® into the upper
four 8-bit values of the result with unsigned saturation.

_m punpckhbw(__nb4 ml, _ n64 nR)

Interleave the four 8-bit values from the high half of mlL with the four values
from the high half of n2. The interleaving begins with the data from .

_m punpckhwd(__nb4 ml, _ n64 nR)

Interleave the two 16-bit values from the high half of ml with the two values
from the high half of n2. The interleaving begins with the data from .

_m punpckhdg(__nb4 ml, _ nm64 nR)

Interleave the 32-bit value from the high half of ml with the 32-bit value from
the high half of n2. The interleaving begins with the data from L.

_m punpckl bwm(__nb4 ml, _ nb4 nR)

Interleave the four 8-bit values from the low half of mL with the four values
from the low half of n2. The interleaving begins with the data from nil.

_mpunpcklwd(__nb4 ml, _ nmb4 nR)

Interleave the two 16-bit values from the low half of il with the two values
from the low half of n2. The interleaving begins with the data from .

Intel® C++ Intrinsics Reference

__nB4 _m punpckldq(__n64 nl, _ nb4 nR)

Interleave the 32-bit value from the low half of ml with the 32-bit value from
the low half of m2. The interleaving begins with the data from mi.

MMX™ Technology Packed Arithmetic Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmi nt ri n. h header file.

Intrinsic Alternate Name Corresponding | Operation Signed | Argument | Result

Name Instruction Values/Bits | Values/Bits

_m paddb _nmm add_pi 8 PADDB Addition - 8/8 8/8

_mpaddw |_nmm add_pi 16 PADDW Addition -- 4/16 4/16

_m paddd _mm add_pi 32 PADDD Addition -- 2/32 2/32

_m paddsb |_mm adds_pi 8 PADDSB Addition Yes 8/8 8/8

_m paddsw | _mm adds_pi 16 | PADDSW Addition Yes 4/16 4/16

_m paddusb |_nmm adds_pu8 PADDUSB Addition No 8/8 8/8

_m paddusw|_mm adds_pul6 |PADDUSW Addition No 4/16 4/16

_m psubb _mm sub_pi 8 PSUBB Subtraction | -- 8/8 8/8

_mpsubw | _nmmsub_pi 16 PSUBW Subtraction -- 4/16 4/16

_m psubd _nm sub_pi 32 PSUBD Subtraction | -- 2/32 2/32

_m psubsb |_mm subs_pi 8 PSUBSB Subtraction | Yes 8/8 8/8

_m psubsw | _mm subs_pi 16 | PSUBSW Subtraction Yes 4/16 4/16

_m psubusb|_nmm subs_pu8 PSUBUSB Subtraction No 8/8 8/8

_m psubusw|_mm subs_pul6 |PSUBUSW Subtraction No 4/16 4/16

_m prmaddwd | _mm rmadd_pi 16 | PMADDWD Multiplication | -- 4/16 2/32

_mpmul hw | _mm rmul hi _pi 16 | PMULHW Multiplication | Yes 4/16 4/16 (high)

_mpmllw |[_nmmullo_pil6|PMILLW Multiplication | -- 4/16 4/16 (low)
__mb4 _mpaddb(__nmb4 ml, __nb4 nR)

Add the eight 8-bit values in ml to the eight 8-bit values in N2.

__nb4 _m paddw(__n64 ni,

__nb4 nR)

Add the four 16-bit values in nl to the four 16-bit values in N2.

213

Intel® C++ Compiler for Linux* Systems User's Guide

__nb4 mpaddd(__nm64 nml, _ n64 nR)
Add the two 32-bit values in ml to the two 32-bit values in 2.
n64 _m paddsb(__nb64 nml, _ nb4 nR)

Add the eight signed 8-bit values in nl to the eight signed 8-bit values in N2
using saturating arithmetic.

n64 m paddsw(__n64 nl, _ nb4 nR)

Add the four signed 16-bit values in il to the four signed 16-bit values in N2
using saturating arithmetic.

n64 _m paddusb(__nm64 nil, _ nmb4 n)

Add the eight unsigned 8-bit values in Ml to the eight unsigned 8-bit values in
NP and using saturating arithmetic.

n64 _m paddusw(__nm64 nil, _ nb64 nR)

Add the four unsigned 16-bit values in L to the four unsigned 16-bit values in
NP using saturating arithmetic.

n64 _m psubb(__nb4 ml, _ n64 nR)

Subtract the eight 8-bit values in M2 from the eight 8-bit values in nL.
n64 m psubw(__nb4 ml, _ nb4 nR)

Subtract the four 16-bit values in N2 from the four 16-bit values in L.
n64 _m psubd(__nb4 ml, _ n64 nR)

Subtract the two 32-bit values in M2 from the two 32-bit values in .
n64 _m psubsb(__nb64 ml, _ nb4 nR)

Subtract the eight signed 8-bit values in M2 from the eight signed 8-bit values in
Ml using saturating arithmetic.

n64 m psubsw(__n64 nl, _ nb4 nR)

Subtract the four signed 16-bit values in M2 from the four signed 16-bit values
in Ml using saturating arithmetic.

n64 _m psubusb(__nm64 nil, _ nmb4 nP)

Subtract the eight unsigned 8-bit values in M2 from the eight unsigned 8-bit
values in Ml using saturating arithmetic.

n64 _m psubusw(__ 64 nil, _ nb64 nR)

Subtract the four unsigned 16-bit values in N2 from the four unsigned 16-bit
values in ML using saturating arithmetic.

n64 _m praddwd(__nm64 nl, _ B4 nR)

Multiply four 16-bit values in ml by four 16-bit values in M2 producing four 32-
bit intermediate results, which are then summed by pairs to produce two 32-bit
results.

64 _mpnmul hw(__mB4 nml, __nB4 np)

Multiply four signed 16-bit values in il by four signed 16-bit values in M2 and
produce the high 16 bits of the four results.

n64 mpmul Ilw(__n64 nl, _ nb4 nR)

Multiply four 16-bit values in il by four 16-bit values in M2 and produce the
low 16 bits of the four results.

214

Intel® C++ Intrinsics Reference

MMX™ Technology Shift Intrinsics

The prototypes for MM X™ technology intrinsics are in the mm nt ri n. h header file.

Intrinsic Alternate Shift Shift Corresponding
Name Name Direction | Type Instruction
mpsllw | _mmsll _pil6 |left Logical PSLLW
_mopsliw |_nmmslli_pil6]|left Logical PSLLW
mpslld | _mmsll _pi32 |left Logical PSLLD
—mupslldi | _mmslli_pi32]Ieft Logical PSLLDI
_mpsllq |_nmmsll_si64 |left Logical PSLLQ
_mpsllqi |_nmmslli_si64]left Logical PSLLQ
_mpsraw |_nmmsra_pi 16 |right Arithmetic | PSRAW
_mpsraw |_nmmsrai_pi 16 |right Arithmetic | PSRAW
_mpsrad |_nmsra_pi32 |right Arithmetic | PSRAD
_mpsradi |_nmm srai_pi 32 |right Arithmetic | PSRADI
_mpsrlw |_mmsrl_pil6 |right Logical PSRLW
_mpsriw |_mmsrli_pil6|right Logical PSRLW
_mpsrld |_mmsrl_pi32 |right Logical PSRLD
_mpsrldi |{_mmsrli_pi32|right Logical PSRLDI
_mpsrlqg |[_mmsrl_si64 |right Logical PSRLQ
_mpsrlqi |_mmsrli_si64]right Logical PSRLQ
_ b4 mpslIiw__nm64d m _ nb4 count)

Shift four 16-bit values in mleft the amount specified by count while shifting

in zeros.

n64 mpsliw (__nm4 m

Shift four 16-bit values in mleft the amount specified by count while shifting

i nt count)

in zeros. For the best performance, count should be a constant.

n64 mpslld(__nb4 m
Shift two 32-bit values in mleft the amount specified by count while shifting

in zeros.

__nB4 count)

215

Intel® C++ Compiler for Linux* Systems User's Guide

__nb4

n64

n64

n64

n64

n64

n64

n64

n64

n64

n64

n64

n64

216

_mpslldi(__m4 m int count)

Shift two 32-bit values in mleft the amount specified by count while shifting
in zeros. For the best performance, count should be a constant.

_mpsllq(__m4 m _ nb4 count)

Shift the 64-bit value in mleft the amount specified by count while shifting in
ZET0S.

_mpsllqi(__m4 m int count)

Shift the 64-bit value in mleft the amount specified by count while shifting in
zeros. For the best performance, count should be a constant.

_mpsraw(__nm4 m _ nb4 count)

Shift four 16-bit values in mright the amount specified by count while shifting
in the sign bit.

_mpsrawi (__m64 m int count)

Shift four 16-bit values in mright the amount specified by count while shifting
in the sign bit. For the best performance, count should be a constant.

_mpsrad(__m4 m _ nb4 count)

Shift two 32-bit values in mright the amount specified by count while shifting
in the sign bit.

_mpsradi (__m4 m int count)

Shift two 32-bit values in mright the amount specified by count while shifting
in the sign bit. For the best performance, count should be a constant.

_mpsriw(__m4 m _ nb4 count)

Shift four 16-bit values in mright the amount specified by count while shifting
in zeros.

_mpsriwi(__m4 m int count)

Shift four 16-bit values in mright the amount specified by count while shifting
in zeros. For the best performance, count should be a constant.

_mpsrld(__m4 m _ nb4 count)

Shift two 32-bit values in mright the amount specified by count while shifting
in zeros.

_mpsrldi(__m4 m int count)

Shift two 32-bit values in mright the amount specified by count while shifting
in zeros. For the best performance, count should be a constant.

_mpsrlq(__m4 m _ nb4 count)

Shift the 64-bit value in mright the amount specified by count while shifting in
ZEeTO0S.

_mpsrlqi(__m4 m int count)

Shift the 64-bit value in mright the amount specified by count while shifting in
zeros. For the best performance, count should be a constant.

Intel® C++ Intrinsics Reference

MMX™ Technology Logical Intrinsics

The prototypes for MM X™ technology intrinsics are in the mm nt ri n. h header file.

Intrinsic | Alternate Operation Corresponding
Name Name Instruction
_mpand |_nmand_si 64 Bitwise AND PAND

_m pandn |_nm andnot _si 64 | Logical NOT PANDN

_m por _mmor_si64 Bitwise OR POR

_m pxor |_nm.Xxor_si 64 Bitwise Exclusive OR | PXOR

__nB4 _m pand(__n64 mil,

__nb4 nR)

Perform a bitwise AND of the 64-bit value in il with the 64-bit value in 2.

__nB4 _m pandn(__nm64 ni,

n64 ne)

Perform a logical NOT on the 64-bit value in Ml and use the result in a bitwise
AND with the 64-bit value in 2.

__nmb4 mpor(__nb4 mi,

__nb4 nR)

Perform a bitwise OR of the 64-bit value in mlL with the 64-bit value in nR.

__nb4 _m pxor(__n64 mil,

__nb4 ne)

Perform a bitwise XOR of the 64-bit value in ml with the 64-bit value in n?.

MMX™ Technology Compare Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmi nt ri n. h header file.

Intrinsic Alternate Comparison | Number |Element | Corresponding
Name Name of Bit Size | Instruction
Elements

_m pcnpegb | _nm cnpeq_pi 8 |Equal 8 8 PCMPEQB

_m pcnpeqw| _nm cnpeq_pi 16 [Equal 4 16 PCVPEQW

_m pcnpeqd | _nm cnpeq_pi 32 | Equal 2 32 PCVPEQD
_m_pcnpgtb | _mm cnpgt _pi 8 | Greater Than |8 8 PCMPGTB

_m pcmpgtw| _nmm cnpgt _pi 16 | Greater Than |4 16 PCMPGTW

_m pcnpgtd | _nm cnpgt _pi 32 | Greater Than | 2 32 PCMPGTD

217

Intel® C++ Compiler for Linux* Systems User's Guide

__nb4 _mpcnpegb(__n64 nil, _ nb64 nR)

If the respective 8-bit values in ML are equal to the respective 8-bit values in N2
set the respective 8-bit resulting values to all ones, otherwise set them to all
ZEeTO0S.

n64 _m pcrpegqw(__ 64 nil, _ b4 nP)

If the respective 16-bit values in Ml are equal to the respective 16-bit values in
MR set the respective 16-bit resulting values to all ones, otherwise set them to all
ZeT0S.

n64 _m pcnpeqd(__nm64 nil, _ nb64 nR)

If the respective 32-bit values in Ml are equal to the respective 32-bit values in
MR set the respective 32-bit resulting values to all ones, otherwise set them to all
ZEeros.

n64 mpcnpgtb(__nm64 nml, _ nb64 nR)

If the respective 8-bit values in ML are greater than the respective 8-bit values in
MR set the respective 8-bit resulting values to all ones, otherwise set them to all
ZEeros.

__nB4 _mpcnpgtw(__nm64 nil, _ b4 nR)

If the respective 16-bit values in Ml are greater than the respective 16-bit values
in M2 set the respective 16-bit resulting values to all ones, otherwise set them to
all zeros.

n64 mpcnpgtd(__nm64 nml, _ nb64 nR)

If the respective 32-bit values in Ml are greater than the respective 32-bit values
in N set the respective 32-bit resulting values to all ones, otherwise set them all
to zeros.

MMX™ Technology Set Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmi nt ri n. h header file.

Intrinsic Operation Number of | Element | Signed | Reverse
Name Elements | Bit Size Order
_nmm set zer o_si 64 | set to zero 1 64 No No

_mm set _pi 32 set integer values | 2 32 No No

_mm set _pi 16 set integer values | 4 16 No No
_mmset_pi8 set integer values | 8 8 No No
_mmset1_pi 32 set integer values | 2 32 Yes No
_mmsetl_pil6 set integer values | 4 16 Yes No
_mmsetl _pi8 set integer values | 8 8 Yes No

_mm setr_pi 32 set integer values | 2 32 No Yes

218

Intel® C++ Intrinsics Reference

Intrinsic Operation Number of | Element | Signed | Reverse
Name Elements | Bit Size Order
_nmmsetr_pi 16 set integer values | 4 16 No Yes
_mmsetr_pi 8 set integer values | 8 8 No Yes

«‘1:) Note

In the following descriptions regarding the bits of the MMX register, bit O is the least
significant and bit 63 is the most significant.

__nB4 nmm setzero_si 64()

PXOR
Sets the 64-bit value to zero.
r .= 0x0

n64 mmset pi32(int i1, int i0)

(composite) Sets the 2 signed 32-bit integer values.
ro:=1i0
ri:=il
n64 _nm set pi 16(short s3, short s2, short sl1, short sO)

(composite) Sets the 4 signed 16-bit integer values.
ro:=
ri:
r2:
r3:

__nmB4 mmset pi8(char b7, char b6, char b5, char b4, char b3,
char b2, char bl, char bO0)

SRE3

(composite) Sets the 8 signed 8-bit integer values.

ro := bo
rl := bl
r7 := b7

n64 mmsetl pi32(int i)

Sets the 2 signed 32-bit integer values to i .
ro:=i
ri:=i

n64 nmm setl pi 16(short s)

(composite) Sets the 4 signed 16-bit integer values to W.

ro :=w
ri.=w
r2 .= w
r3 = w

n64 nm setl pi 8(char b)

(composite) Sets the 8 signed 8-bit integer values to b

0:=b
rl:=b
r7:=b

219

Intel® C++ Compiler for Linux* Systems User's Guide

B4 mmsetr_pi32(int i1, int i0)
(composite) Sets the 2 signed 32-bit integer values in reverse order.
ro:=1i0
ri:=il

n64 nm setr_pi 16(short s3, short s2, short si1, short sO)

(composite) Sets the 4 signed 16-bit integer values in reverse order.
w0

ro .=

ri.=wl
r2 := w2
r3 :=w3

__nB4 mmsetr_pi 8(char b7, char b6, char b5, char b4, char b3,
char b2, char bl, char bO0)

(composite) Sets the 8 signed 8-bit integer values in reverse order.

ro := bo
rl := bl
r7 := b7

MMX™ Technology Intrinsics on Itanium® Architecture

MMX™ technology intrinsics provide access to the MMX technology instruction set on
Itanium®-based systems. To provide source compatibility with the IA-32 architecture, these
intrinsics are equivalent both in name and functionality to the set of [A-32-based MMX intrinsics.

Some intrinsics have more than one name. When one intrinsic has two names, both names
generate the same instructions, but the first is preferred as it conforms to a newer naming standard.

The prototypes for MMX technology intrinsics are in the mmi nt ri n. h header file.
Data Types

The C data type __ 64 is used when using MMX technology intrinsics. It can hold eight 8-bit
values, four 16-bit values, two 32-bit values, or one 64-bit value.

The __ b4 data type is not a basic ANSI C data type. Therefore, observe the following usage
restrictions:

» Use the new data type only on the left-hand side of an assignment, as a return value, or as a
parameter. You cannot use it with other arithmetic expressions (" +"," - ", and so on).

* Use the new data type as objects in aggregates, such as unions, to access the byte elements
and structures; the address of an ___ 64 object may be taken.

* Use new data types only with the respective intrinsics described in this documentation.

For complete details of the hardware instructions, see the Intel® Architecture MMX Technology
Programmer's Reference Manual. For descriptions of data types, see the Intel® Architecture
Software Developer's Manual, Volume 2.

220

Intel® C++ Intrinsics Reference

Streaming SIMD Extensions

This section describes the C++ language-level features supporting the Streaming SIMD
Extensions in the Intel® C++ Compiler. These topics explain the following features of the
intrinsics:

* Floating Point Intrinsics

e Arithmetic Operation Intrinsics

* Logical Operation Intrinsics

* Comparison Intrinsics

* Conversion Intrinsics

* Load Operations

* Set Operations

» Store Operations

e Cacheability Support

* Integer Intrinsics

* Memory and Initialization Intrinsics
* Miscellaneous Intrinsics

e Using Streaming SIMD Extensions on Itanium® Architecture

The prototypes for Streaming SIMD Extensions intrinsics are in the Xmm nt ri n. h header file.

Floating-point Intrinsics for Streaming SIMD Extensions

You should be familiar with the hardware features provided by the Streaming SIMD Extensions
when writing programs with the intrinsics. The following are four important issues to keep in
mind:

e Certain intrinsics, such as _mm | oadr _ps and _nm cnpgt _ss, are not directly
supported by the instruction set. While these intrinsics are convenient programming aids, be
mindful that they may consist of more than one machine-language instruction.

* Floating-point data loaded or stored as __nil28 objects must be generally 16-byte-aligned.

* Some intrinsics require that their argument be immediates, that is, constant integers
(literals), due to the nature of the instruction.

e The result of arithmetic operations acting on two NaN (Not a Number) arguments is
undefined. Therefore, FP operations using NaN arguments will not match the expected
behavior of the corresponding assembly instructions.

221

Intel® C++ Compiler for Linux* Systems User's Guide

Arithmetic Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions intrinsics are in the Xnmi nt ri n. h header file.

Intrinsic Instruction | Operation RO R1 R2 R3
_mm add_ss ADDSS Addition a0 [op] a1 a2 a3
b0
_mm add_ps ADDPS Addition a0 [op] a1 a2 a3
bO [op] |[op] |[op]
bl b2 b3
_mm sub_ss SUBSS Subtraction a0 [op] a1 a2 a3
b0
_mm sub_ps SUBPS Subtraction a0 [op] a1 a2 a3
bO [op] |[op] |[op]
bl b2 b3
_mm nul _ss MULSS Multiplication |[a0 [op] [al a2 a3
b0
_mm_mul _ps MULPS Multiplication |a0 [op] |al a2 a3
b0 [op] |[op] |[op]
bl b2 b3
_mmdiv_ss Dl VSS Division a0 [op] a1 a2 a3
b0
_mmdiv_ps Dl VPS Division a0 [op] a1 a2 a3
b0 [op] |[op] |[op]
bl b2 b3
_mmsqrt_ss | SQRTSS Squared Root [op] a0 |al a2 a3
_mmsaqrt_ps |SOQRTPS Squared Root |[0p] a0 |[op] [op] [op]
bl b2 b3
_mmrcp_ss RCPSS Reciprocal [op] a0 |al a2 a3
_mm_rcp_ps RCPPS Reciprocal [op] a0 |[op] [op] [op]
bl b2 b3
_mmrsqgrt_ss |RSQRTSS | Reciprocal [op] a0 |al a2 a3
Square Root
_mmrsqrt_ps | RSQRTPS | Reciprocal [op] a0 [[op] [op] [op]
Squared Root bl b2 b3
_mm.mn_ss M NSS Computes [op] (al a2 a3
Minimum a0, bo)

222

Intel® C++ Intrinsics Reference

Intrinsic Instruction | Operation RO R1 R2 R3
_mmmn_ps |MNPS Computes [op] ([op] [[op] [[op]
Minimum a0, b0) |[(al, (az, (a3,

b1) b2) b3)

_Mm_max_ss MAXSS Computes [op] (al a2 a3
Maximum a0, bo)

_mm max_ps | MAXPS Computes [op] ([op] [[op] |[op]
Maximum a0, b0) |(al, (a2, (a3,

_ nml28 mmadd ss(__nl28 a, _ ml28 b)

Adds the lower SP FP (single-precision, floating-point) values of a and b; the

upper 3 SP FP values are passed through from a.
ro := a0 + bO
rli:=al; r2:=a2; r3 := a3

_ nml28 mmadd ps(__nl28 a, _ ml28 b)
Adds the four SP FP values of a and b.

ro := a0 + bo
rl :=al + bl
r2 := a2 + b2
r3 := a3 + b3

_ nml28 mmsub _ss(__nl28 a, _ ml28 b)

Subtracts the lower SP FP values of a and b. The upper 3 SP FP values are

passed through from a.
ro := a0 - boO
rl :=al; r2 :=a2; r3 := a3

_ nml28 mmsub _ps(__nl28 a, _ ml28 b)
Subtracts the four SP FP values of a and b.

ro := a0 - boO
rl :=al - bl
r2z := a2 - b2
r3 := a3 - b3

_ 28 mmnul _ss(__nl28 a, _ ml28 b)

Multiplies the lower SP FP values of a and b; the upper 3 SP FP values are

passed through from a.
ro := a0 * bo
rl :=al; r2:=a2; r3 := a3

_ nml28 mmnmul _ps(__nl28 a, _ ml28 b)
Multiplies the four SP FP values of a and b.

ro := a0 * bo
rl :=al * bl
r2 := a2 * b2
r3 := a3 * b3

~ nml28 mmdiv_ss(__nl28 a, _ ml28 b)

Divides the lower SP FP values of a and b; the upper 3 SP FP values are passed

through from a.
ro := a0 / bo
rl:=al; r2:=a2; r3 := a3

223

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28 mmdiv_ps(__nl28 a, _ ml28 b)
Divides the four SP FP values of a and b.

ro := a0 / bo
rl :=al/ bl
r2 := a2/ b2
r3 := a3 / b3

_ nml28 mmsqrt_ss(__nl28 a)

Computes the square root of the lower SP FP value of a ; the upper 3 SP FP
values are passed through.

ro := sqrt(a0)

rli:=al; r2:=a2; r3 := a3

_ nml28 mmsqrt_ps(__nl28 a)

Computes the square roots of the four SP FP values of a.

ro := sqrt(a0)
ri:= sqrt(al)
r2 :=sqrt(a2)
r3 := sqrt(a3)

_ nml28 mmrcp_ss(__nml28 a)

Computes the approximation of the reciprocal of the lower SP FP value of a; the
upper 3 SP FP values are passed through.

ro := recip(a0)

rli:=al; r2:=a2; r3 := a3

_ nml28 mmrcp_ps(__nml28 a)

Computes the approximations of reciprocals of the four SP FP values of a.

ro := recip(a0)
ri := recip(al)
r2 :=recip(a2)
r3 := recip(al3)

_ ml28 mmrsqgrt_ss(__m28 a)

Computes the approximation of the reciprocal of the square root of the lower SP
FP value of a; the upper 3 SP FP values are passed through.
ro := recip(sqgrt(a))
ri:=al; r2 := a2
_ nml28 mmrsqrt_ps(__m28 a)

3 := a3

Computes the approximations of the reciprocals of the square roots of the four
SP FP values of a.

ro := recip(sqgrt(a0))
ri := recip(sqgrt(al))
r2 :=recip(sqrt(a2))
r3 :=recip(sqrt(a3d))

_ nml28 mmmin_ss(__nl28 a, _ ml28 b)

Computes the minimum of the lower SP FP values of a and b; the upper 3 SP

FP values are passed through from a.
ro := mn(a0, b0)
rli:=al; r2 :=a2; r3 := a3

_ nml28 mmmin_ps(__nl28 a, _ ml28 b)

Computes the minimum of the four SP FP values of a and b.

ro := mn(a0, b0)
ri := mn(al, bl)
r2 := mn(a2, b2)
r3 := mn(a3, b3)

224

Intel® C++ Intrinsics Reference

_ nml28 mmnmax_ss(__nl28 a, _ ml28 b)

Computes the maximum of the lower SP FP values of a and b; the upper 3 SP

FP values are passed through from a.
ro := max(a0, b0)
rli:=al; r2:=a2; r3 := a3

_ nml28 mmnmax_ps(__nl28 a, _ ml28 b)

Computes the maximum of the four SP FP values of a and b.

ro := max(a0, b0)
ri := max(al, bl)
r2 := max(a2, b2)
r3 := max(a3, b3)

Logical Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions intrinsics are in the Xnmi nt ri n. h header file.

Intrinsic Operation Corresponding
Name Instruction
_nmm and_ps Bitwise AND ANDPS

mm andnot _ps | Logical NOT ANDNPS
_mm.or_ps Bitwise OR ORPS

_m _xor _ps Bitwise Exclusive OR | XORPS

_ nml28 mmand ps(__nl28 a, _ ml28 b)
Computes the bitwise And of the four SP FP values of a and b.

ro := a0 & b0
rl := al & bl
r2z := a2 & b2
r3 := a3 & b3

__ nml28 _mm andnot_ps(__nl28 a, _ ml28 b)
Computes the bitwise AND-NOT of the four SP FP values of a and b.

ro := ~a0 & b0
rl := ~al & bl
r2 := ~a2 & b2
r3 := ~a3 & b3

_ nml28 mmor _ps(__m28 a, _ m28 b)
Computes the bitwise OR of the four SP FP values of a and b.

ro := a0 | bO
ri:=al| bl
r2 :=a2| b2
r3 := a3 | b3

_ nml28 mmxor_ps(__nl28 a, _ ml28 b)
Computes bitwise XOR (exclusive-or) of the four SP FP values of a and b.

ro := a0 ™ bo
rl :=al ~ bl
r2z := a2 ™ b2
r3 := a3 ™ b3

225

Intel® C++ Compiler for Linux* Systems User's Guide

Comparisons for Streaming SIMD Extensions

Each comparison intrinsic performs a comparison of a and b. For the packed form, the four SP FP
values of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower SP
FP values of a and b are compared, and a 32-bit mask is returned; the upper three SP FP values
are passed through from a. The mask is set to Oxf f f f f f f f for each element where the
comparison is true and 0X0 where the comparison is false.

The prototypes for Streaming SIMD Extensions intrinsics are in the Xmm nt ri n. h header file.

Intrinsic Name Comparison Corresponding Instruction
_Mmm cmpeq_ss Equal CVMPEQSS
_hm cnpeq_ps Equal CMPEQPS
_mmcnplt_ss Less Than CMVPLTSS
_mmcnplt_ps Less Than CVPLTPS
_mmcnpl e_ss Less Than or Equal CMPLESS
_mm cnpl e_ps Less Than or Equal CVPLEPS
_mm.cnpgt _ss Greater Than CMPLTSS
_mm_cnpgt _ps Greater Than CMPLTPS
_hm.cnpge_ss Greater Than or Equal CMPLESS
_m_cnpge_ps Greater Than or Equal CMPLEPS
_mm . cnpneq_ss Not Equal CVPNEQSS
_mm cnpneq_ps Not Equal CVPNEQPS
_mmecnpnlt_ss | Not Less Than CMPNLTSS
_mmecnpnlt_ps | Not Less Than CVPNLTPS
_mmcnpnl e_ss | Not Less Than or Equal | CMPNLESS
_mmecnpnl e_ps | Not Less Than or Equal | CMPNLEPS
_mm.cnpngt _ss Not Greater Than CVPNLTSS
_mm_cnpngt _ps Not Greater Than CVPNLTPS
_mm cnpnge_ss Not Greater Than or Equal | CMPNLESS

226

Intel® C++ Intrinsics Reference

Intrinsic Name Comparison Corresponding Instruction
_hm _cnpnge_ps Not Greater Than or Equal | CMPNLEPS
_mmcnpord_ss | Ordered CMPORDSS
_mmcnpord_ps | Ordered CMPORDPS
_hm_cnpunord_ss | Unordered CMPUNORDSS
_hm_cnpunor d_ps | Unordered CMPUNORDPS
_mm_coni eq_ss | Equal COM SS
_mm_coni | t_ps Less Than COM SS
_mmconile_ss | Less Than or Equal COM SS
_mm_coni gt _ss Greater Than COM SS
_mm comi ge_ss Greater Than or Equal COM SS
_mm_coni neq_ss | Not Equal COM SS
_mm_uconi eq_ss | Equal UCOM SS
_mm_uconi It _ss | Less Than UCOoM SS
_mm ucom | e_ss | Less Than or Equal UCOM SS
_mm_ucom gt _ss | Greater Than UCoM SS
_mm ucom ge_ss | Greater Than or Equal UCOM SS
_mm_ucom neq_ss | Not Equal UCOM SS

_ nml28 _mmcnpeq_ss(__ml28 a, _ ml28 b)

Compare for equality.
ro := (a0 == b0) ? Oxffffffff : OxO
rl :=al; r2 :=a2; r3 := a3

_ nml28 _mmcnpeq_ps(__m28 a, _ ml28 b)

Compare for equality.

ro := (a0 == b0) ? Oxffffffff 0x0
ri:=(al == bl) ? Oxffffffff 0x0
r2 := (a2 == b2) ? Oxffffffff 0x0
r3 := (a3 == b3) ? Oxffffffff 0x0

227

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28 mmecnplt _ss(__ml28 a, _ ml28
Compare for less-than.
ro := (a0 < b0) ? Oxffffffff :
ri:=al; r2:=a2; r3 := a3
_ 28 mmecnplt _ps(__m28 a, _ ml28
Compare for less-than.
ro := (a0 < b0) ? Oxffffffff :
rl:=(al < bl) ? Oxffffffff :
r2 := (a2 < b2) ? Oxffffffff :
r3 := (a3 < b3) ? Oxffffffff :
_ nml28 mmecnple_ss(__ml28 a, nl28
Compare for less-than-or-equal.
ro := (a0 <= b0) ? Oxffffffff
rli:=al; r2 :=a2; r3 := a3
_ nml28 mmecnple _ps(__m28 a, _ ml28
Compare for less-than-or-equal.
ro := (a0 <= b0) ? Oxffffffff
ri:=(al <= bl) ? Oxffffffff
r2 := (a2 <= b2) ? Oxffffffff
r3 := (a3 <= b3) ? Oxffffffff :
_ 28 _mmecnpgt _ss(__m28 a, _ ml28
Compare for greater-than.
ro := (a0 > b0) ? Oxffffffff :
rli:=al; r2:=a2; r3 := a3
_ nml28 mmecnpgt _ps(__ml28 a, _ ml28
Compare for greater-than.
ro := (a0 > b0) ? Oxffffffff
ri:=(al > bl) ? Oxffffffff
r2 := (a2 > b2) ? Oxffffffff
r3 := (a3 > b3) ? Oxffffffff :
_ nml28 _mmcnpge_ss(__ml28 a, _ ml28
Compare for greater-than-or-equal.
ro := (a0 >= b0) ? Oxffffffff
ri:=al; r2:=a2; r3 := a3
__ nml28 _mmcnpge_ps(__m28 a, _ ml28
Compare for greater-than-or-equal.
ro := (a0 >= b0) ? Oxffffffff
ri:=(al >= bl) ? Oxffffffff
r2 := (a2 >= b2) ? Oxffffffff
r3 := (a3 >= b3) ? Oxffffffff
_ nml28 _mmcnpneqg_ss(__nl28 a, _ ml28
Compare for inequality.
ro:= (a0 !'= b0) ? Oxffffffff
ri:=al; r2:=2a2; r3 := a3

__ nml28 _mm cnpneqg_ps(__nl28 a, _ ml28

228

Compare for inequality.

ro := (a0 !'= b0)
ri:= (al !'= bl)
r2 := (a2 !'= b2)
r3 := (a3 !'= b3)

? OXfiffffff
? OXfIffffff
? Oxffffffff
? Oxffffffff

b)
0x0
b)

0x0
0x0
0x0
0x0

b)
0x0
b)

0x0
0x0
0x0
0x0

b)
0x0
b)

0x0
0x0
0x0
0x0

b)
0x0
b)

0x0
0x0
0x0
0x0

b)
0x0
b)

0x0
0x0
0x0
0x0

Intel® C++ Intrinsics Reference

_ nml28 mmecnpnlt_ss(__nl28 a, _ ml28 b)

Compare for not-less-than.
ro :=1(a0 < b0) ? Ooxffffffff : OxO
ri:=al,; r2:=a2; r3 := a3

_ nml28 mmecnpnlt_ps(__nl28 a, _ ml28 b)

Compare for not-less-than.

ro :=1(a0 < b0) ? Oxffffffff 0x0
ri:=1(al < bl) ? Oxffffffff : OxO
r2 :=1(a2 < b2) ? Oxffffffff : OxO
r3 :=1(a3 < b3) ? oxffffffff : OxO

_ nml28 mmecnpnle_ss(__nl28 a, _ ml28 b)

Compare for not-less-than-or-equal.
ro :=1(a0 <= b0) ? oxffffffff : OxO
rli:=al; r2:=a2; r3 := a3

_ nml28 mmecnpnle _ps(__nl28 a, _ ml28 b)

Compare for not-less-than-or-equal.

ro :=1(a0 <= b0) ? Oxffffffff 0x0
ri:=1(al <= bl) ? Oxffffffff : OxO
r2 :=1(a2 <= b2) ? Oxffffffff : OxO
r3 :=1(a3 <= b3) ? Oxffffffff : OxO

_ nml28 _mmcnpngt_ss(__nl28 a, _ ml28 b)

Compare for not-greater-than.
ro:=1!(a0 > b0) ? Oxffffffff : OxO
rli:=al; r2:=a2; r3 := a3

_ nml28 mmecnpngt_ps(__ nl28 a, _ nml28 b)

Compare for not-greater-than.

ro :=1(a0 > b0) ? Oxffffffff 0x0
ri:=1(al > bl) ? Oxffffffff : OxO
r2 :=1(a2 > b2) ? oxffffffff : 0OxO
r3 :=1(a3 > b3) ? Oxffffffff : OxO

__nml28 _mmcnpnge_ss(__nl28 a, _ ml28 b)

Compare for not-greater-than-or-equal.
ro :=1(a0 >= b0) ? Ooxffffffff : OxO
rli:=al; r2:=a2; r3 := a3

__nml28 _mm cnpnge_ps(__nl28 a, nl28 b)

Compare for not-greater-than-or-equal.

u
ro :=1(a0 >= b0) ? Oxffffffff 0x0
ri:=1(al >= bl) ? Oxffffffff 0x0
r2 :=1(a2 >= b2) ? Oxffffffff 0x0
r3 :=1(a3 >= b3) ? Oxffffffff 0x0

_ nml28 _mmcnpord_ss(__nl28 a, _ ml28 b)

Compare for ordered.
ro := (a0 ord? b0) ? Oxffffffff : OxO
ri:=al; r2:=2a2; r3 := a3

_ nml28 _mmcnpord_ps(__nl28 a, _ ml28 b)

Compare for ordered.

ro := (a0 ord? b0) ? Oxffffffff : OxO
ri:= (al ord? bl) ? Oxffffffff : OxO
r2 := (a2 ord? b2) ? Oxffffffff : OxO
r3 := (a3 ord? b3) ? Oxffffffff 0x0

229

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28 _mmcnpunord _ss(__ ml28 a, _ ml28 h)

Compare for unordered.
ro := (a0 unord? b0) ? Oxffffffff : OxO
ri:=al,; r2:=a2; r3 := a3

_ nml28 mmcnpunord ps(__ ml28 a, _ ml28 h)

i nt

i nt

i nt

i nt

i nt

i nt

i nt

i nt

230

Compare for unordered.

ro := (a0 unord? b0) ? Oxffffffff 0x0
rl := (al unord? bl) ? Oxffffffff 0x0
r2 := (a2 unord? b2) ? Oxffffffff 0x0
r3 := (a3 unord? b3) ? Oxffffffff 0x0

_mm com eq_ss(__ml28 a, _ nl28 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are
equal, 1 is returned. Otherwise 0 is returned.
r := (a0 == b0) ? Ox1 : 0xO

_mmcomlt_ss(__m28 a, _ nl28 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b,
1 is returned. Otherwise 0 is returned.
r := (a0 < b0) ? Ox1 : 0OxO

_mmcomle_ss(__m28 a, _ nl28 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is
less than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0x1 : 0xO

_mmcomgt_ss(__ml28 a, _ nl28 b)

Compares the lower SP FP value of @ and b for a greater than b. If a is greater

than b are equal, 1 is returned. Otherwise 0 is returned.
r := (a0 > b0) ? 0Ox1 : OxO0

_mmcomige_ss(__m28 a, _ nil28 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a
is greater than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0Ox1 : 0xO0

_mm comineq_ss(__ml28 a, _ ml28 bh)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are
not equal, 1 is returned. Otherwise 0 is returned.
r := (a0 !'= b0) ? Ox1 : 0xO0

_mmucom eq_ss(__ml28 a, _ ml28 bh)

Compares the lower SP FP value of a and b for a equal to b. If a and b are
equal, 1 is returned. Otherwise 0 is returned.
r := (a0 == b0) ? Ox1 : 0xO0

_mmucom It_ss(__ m28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b,

1 is returned. Otherwise 0 is returned.
r := (a0 < b0) ? 0Ox1 : Ox0

_mmucom le_ss(__ m28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is

less than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0Ox1 : 0xO0

Intel® C++ Intrinsics Reference

int _nmuconmigt _ss(__ml28 a, _ nil28 b)

Compares the lower SP FP value of @ and b for a greater than b. If a is greater

than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 > b0) ? 0Ox1 : OxO0

int _nmuconige ss(__m28 a, _ nil28 b)

Compares the lower SP FP value of @ and b for a greater than or equal to b. If a

is greater than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0Ox1 : 0xO0

int _nmucom neq_ss(__ml28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are

not equal, 1 is returned. Otherwise 0 is returned.
r := (a0 !'= b0) ? Ox1 : 0OxO0

Conversion Operations for Streaming SIMD Extensions

The conversions operations are listed in the following table followed by a description of each
intrinsic with the most recent mnemonic naming convention. The alternate name is provided in

case you have used these intrinsics before.

The prototypes for Streaming SIMD Extensions intrinsics are in the Xmm nt ri n. h header file.

Intrinsic Name Alternate Name Corresponding Instruction
_mm cvt_ss2si _mmcvtss_si 32 | CVTSS2SI
_mm cvt_ps2pi _mmcvtps_pi 32 | CVTPS2PI
_mmcvtt_ss2si _mmcvttss_si 32 | CVTTSS2SI
_mm cvtt _ps2pi _mmcvttps_pi 32 | CVTTPS2PI
_mm cvt _si 2ss _mmcvtsi 32_ss | CVTSI 2SS
_mm cvt_pi 2ps _mmcvtpi 32_ps | CVTTPS2PI
_mm cvtpi 16_ps composite
_mm cvt pul6_ps composite
_mm cvt pi 8_ps composite
_mm _cvt pu8_ps composite
_mm cvt pi 32x2_ps composite
_mmcvtps_pi 16 composite
_mmcvtps_pi 8 composite

231

Intel® C++ Compiler for Linux* Systems User's Guide

int _nmmecvt _ss2si(__nml28 a)

n64

Convert the lower SP FP value of a to a 32-bit integer according to the current

rounding mode.
r := (int)a0

_mmcvt_ps2pi (__m28 a)

Convert the two lower SP FP values of a to two 32-bit integers according to the

current rounding mode, returning the integers in packed form.
ro := (int)a0
ri:= (int)al

int _mMmecvtt _ss2si(__nl28 a)

n64

Convert the lower SP FP value of a to a 32-bit integer with truncation.
r := (int)a0

_mmcvtt_ps2pi (__ml28 a)

Convert the two lower SP FP values of a to two 32-bit integer with truncation,

returning the integers in packed form.
ro := (int)a0
ri:= (int)al

_ nml28 mmecvt_si2ss(__ nl28, int)

Convert the 32-bit integer value b to an SP FP value; the upper three SP FP
values are passed through from a.

ro := (float)b

ri:=al; r2:=a2; r3 := a3

_ nml28 mmecvt _pi2ps(__nl28, _ nb4)

_inli

_inli

_inli

232

Convert the two 32-bit integer values in packed form in b to two SP FP values;
the upper two SP FP values are passed through from a.

ro := (float)bO
ri := (float)bl
r2z .= a2
r3 .= a3

ne nil28 mmcvtpil6_ps(__nb64 a)

Convert the four 16-bit signed integer values in a to four single precision FP
values.

ro := (float)a0
rli:= (float)al
r2 := (float)a2
r3 := (float)a3

ne _ nil28 mmcvtpul6 _ps(__nb64 a)

Convert the four 16-bit unsigned integer values in a to four single precision FP
values.

ro := (float)a0
ri:= (float)al
r2 := (float)a2
r3 := (float)a3

ne _ nl28 _mm cvtpi8 ps(__nb4 a)

Convert the lower four 8-bit signed integer values in a to four single precision
FP values.

ro := (float)aO
ri:= (float)al
r2 := (float)a2
r3 := (float)a3

Intel® C++ Intrinsics Reference

_inline __ m28 _mmcvtpu8 ps(__n64 a)

Convert the lower four 8-bit unsigned integer values in a to four single precision

FP values.

ro := (float)a0
rl := (float)al
r2 .= (float)a2
r3 := (float)a3

_inline __m28 _mmcvtpi32x2 _ps(__nmb4 a, _ nb4 b)

Convert the two 32-bit signed integer values in a and the two 32-bit signed
integer values in b to four single precision FP values.

ro := (float)a0
ri:= (float)al
r2 .= (float)bO
r3 := (float)bl

_inline __mb4 _mmcvtps_pil16(__m28 a)

Convert the four single precision FP values in a to four signed 16-bit integer

values.

ro := (short)a0
ri := (short)al
r2 := (short)a2
r3 := (short)a3

_inline __m4 _mmcvtps_pi8(__nl28 a)

Convert the four single precision FP values in a to the lower four signed 8-bit
integer values of the result.

ro := (char)a0
rl := (char)al
r2 := (char)a2
r3 := (char)a3

Load Operations for Streaming SIMD Extensions

See summary table in Summary of Memory and Initialization topic.
The prototypes for Streaming SIMD Extensions intrinsics are in the Xmm nt ri n. h header file.
_ nml28 _mmload_ss(float * p)

Loads an SP FP value into the low word and clears the upper three words.
ro:=*
ri:=0.0; r2:=0.0; r3:=0.0

_ nml28 _mmload_psl(float * p)

Loads a single SP FP value, copying it into all four words.

ro:=*p
ri:=*p
r2 :=*p
r3 :=*p

_ nml28 _mmload_ps(float * p)
Loads four SP FP values. The address must be 16-byte-aligned.

ro := p[0]
ri .= p[1]
r2 := p[2]
r3 := p[3]

233

Intel® C++ Compiler for Linux* Systems User's Guide

__nml28 _mm | oadu_ps(float * p)
Loads four SP FP values. The address need not be 16-byte-aligned.

ro := p[0]
ri .= p[1]
r2 .= p[2]
r3 := p[3]

__nml28 mm | oadr_ps(float * p)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

ro := p[3]
ri:= p[2]
r2 .= p[1]
r3 := p[0]

Set Operations for Streaming SIMD Extensions

See summary table in Summary of Memory and Initialization topic.

The prototypes for Streaming SIMD Extensions intrinsics are in the Xmm nt ri n. h header file.

_ nml28 mmset_ss(float w)

Sets the low word of an SP FP value to wand clears the upper three words.
ro:=w
ri:=r2:=r3:=0.0

_ nml28 _mmset _psi(float w)

Sets the four SP FP values to W.
ro:=rl:=r2:=r3:=w

_ nml28 mmset _ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs.

ro :=w
ri .= x
r2 :=y
r3 :=z

_ nml28 mmsetr_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs in reverse order.

ro .=z
ri:.=y
r2 := x
r3 :=w

__nl28 mm setzero_ps(void)

Clears the four SP FP values.
ro:=rl1:=r2:=r3 :=0.0

234

Intel® C++ Intrinsics Reference

Store Operations for Streaming SIMD Extensions
See summary table in Summary of Memory and Initialization topic.
The prototypes for Streaming SIMD Extensions intrinsics are in the Xnmi nt ri n. h header file.
void mmstore_ss(float * p, _ nml28 a)

Stores the lower SP FP value.
*p := a0

void mmstore psil(float * p, _ nl28 a)

Stores the lower SP FP value across four words.

p[0] := a0
p[1] := a0
p[2] := a0
p[3] := a0

void _mm store_ps(float *p, _ m28 a)

Stores four SP FP values. The address must be 16-byte-aligned.

p[0] := a0
p[1l] := al
p[2] := a2
p[3] := a3
void _mm storeu_ps(float *p, _ ml28 a)
Stores four SP FP values. The address need not be 16-byte-aligned.
p[0] := a0
p[1] := al
p[2] := a2
p[3] := a3
void mmstorer_ps(float * p, _ nl28 a)
Stores four SP FP values in reverse order. The address must be 16-byte-aligned.
p[0] := a3
p[1l] := a2
p[2] := al
p[3] := a0

_ nml28 mmnove_ss(_ ml28 a, _ ml28 h)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed
through from a.

ro := bo
rl :=al
r2 := a2
r3 := a3

Cacheability Support Using Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions intrinsics are in the Xmm nt ri n. h header file.
voi d _nm pause(voi d)
The execution of the next instruction is delayed an implementation specific amount of time. The

instruction does not modify the architectural state. This intrinsic provides especially significant
performance gain and described in more detail below.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic
execution (especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at
which the code detects the release of the lock. For dynamic scheduling, the PAUSE instruction
reduces the penalty of exiting from the spin-loop.

235

Intel® C++ Compiler for Linux* Systems User's Guide

Example of loop with the PAUSE instruction:

spi n_| oop: pause
cnp eax, A
jne spin_|loop

In the above example, the program spins until memory location A matches the value in register
eax. The code sequence that follows shows a test-and-test-and-set. In this example, the spin
occurs only after the attempt to get a lock has failed.

get lock: nmov eax, 1

xchg eax, A ; Try to get |ock
cnp eax, 0 ; Test if successful
jne spin_loop

Critical Section

/1 critical _section code
mov A, O ; Release |ock
jmp continue

spi n_| oop: pause;

/1 spin-loop hint

cnp 0, A

/1 check lock availability
jne spin_loop

jmp get | ock

/1 continue: other code

Note that the first branch is predicted to fall-through to the critical section in anticipation of
successfully gaining access to the lock. It is highly recommended that all spin-wait loops include
the PAUSE instruction. Since PAUSE is backwards compatible to all existing IA-32 processor
generations, a test for processor type (a CPUID test) is not needed. All legacy processors will
execute PAUSE as a NOP, but in processors which use the PAUSE as a hint there can be significant
performance benefit.

Integer Intrinsics Using Streaming SIMD Extensions

The integer intrinsics are listed in the table below followed by a description of each intrinsic with
the most recent mnemonic naming convention.

The prototypes for Streaming SIMD Extensions intrinsics are in the Xmm nt ri n. h header file.

Intrinsic Alternate Operation Corresponding

Name Name Instruction

_m pextrw _mm extract _pi 16 | Extract on of four words PEXTRW

_mpinsrw | _nminsert_pil6 Insert a word Pl NSRW

_m pmaxsw | _nmm nmex_pi 16 Compute the maximum PMAXSW

_m pnexub _mm_nmax_pu8 Compute the maximum, PVAXUB
unsigned

236

Intel® C++ Intrinsics Reference

Intrinsic Alternate Operation Corresponding

Name Name Instruction

_mpmnsw |_nmmmn_pil6 Compute the minimum PM NSW

_mpninub | _mmnmn_pu8 Compute the minimum, PM NUB
unsigned

_m prmovnskb | _mm novenask_pi 8 Create an eight-bit mask PMOVNMSKB

_m pmul huw | _mm rmul hi _pul6 Multiply, return high bits PMULHUW

_m pshufw _mmshuffle_ pil6 Return a combination of PSHUFW
four words

_m masknovq | _mm rmasknove_si 64 | Conditional Store MASKMOVQ

_m pavgb _mm avg_pu8 Compute rounded average | PAVGB

_m pavgw _mm avg_pul6 Compute rounded average | PAVGW

_m psadbw | _nm sad_pu8 Compute sum of absolute PSADBW
differences

For these intrinsics you need to empty the multimedia state for the mmx register. See The EMMS
Instruction: Why You Need It and When to Use It topic for more details.

int _mpextrw(__nb4 a,

int n)

Extracts one of the four words of a. The selector n must be an immediate.

((n==2) ? a2 :

a3

r:=(n==0) ? a0 : ((n==1) ? al:
))
__nB4 mpinsrw__nb4 a, int d, int n)
Inserts word d into one of four words of a. The selector N must be an
immediate.
ro :=(n==0) ?2 d: ao0;
ri:=(n==1) ? d: al;
r2z :=(n==2) 2 d: a2
r3 :=(n==3) ? d: a3;
b4 _mpnmaxsw__nb4 a, _ nb64 b)
Computes the element-wise maximum of the words in @ and b.
ro := mn(a0, b0)
ri:= mn(al, bl)
r2 := mn(a2, b2)
r3 := mn(a3, b3)
__nb4 _mpnaxub(__nb4 a, __ _nb64 b)
Computes the element-wise maximum of the unsigned bytes in a and b.
ro := mn(a0, b0)
ri := mn(al, bl)
r7 .= mn(a7, b7)

237

Intel® C++ Compiler for Linux* Systems User's Guide

__nb4

n64

_mpmnsw__nmb4 a, _ nb4 b)

Computes the element-wise minimum of the words in a and b.

ro := mn(a0, b0)
ri := mn(al, bl)
r2 := mn(a2, b2)
r3 := mn(a3, b3)

_mpmnub(__nmB4 a, _ nb4 b)

Computes the element-wise minimum of the unsigned bytes in a and b.

ro := mn(a0, b0)
ri := mn(al, bl)
r7 := mn(a7, b7)

int _m prmoviskb(___n64 a)

n64

n64

Creates an 8-bit mask from the most significant bits of the bytes in a.
r .= sign(a7)<<7 | sign(a6)<<6 |... | sign(a0)

_mpmul hum __nb4 a, _ nmb64 b)

Multiplies the unsigned words in a and b, returning the upper 16 bits of the 32-
bit intermediate results.

ro := hiword(a0 * bO0)
ri := hiword(al * bl)
r2 := hiwrd(a2 * b2)
r3 := hiwrd(a3 * b3)

_mpshufw(__nB4 a, int n)

Returns a combination of the four words of a. The selector n must be an

immediate.

ro := word (n&0x3) of a
ri:= word ((n>>2)&0x3) of a
r2 := word ((n>>4)&0x3) of a
r3 := word ((n>>6)&0x3) of a

void _m nmasknmovq(__n64 d, _ nm64 n, char *p)

n64

n64

238

Conditionally store byte elements of d to address p. The high bit of each byte in
the selector N determines whether the corresponding byte in d will be stored.

if (sign(n0)) p[0] := dO
if (sign(nl)) p[1l] :=d1
if (sign(n7)) p[7] := d7

_mpavgb(__n64 a, _ _nb4 bh)

Computes the (rounded) averages of the unsigned bytes in a and b.
t = (unsigned short)a0 + (unsigned short)hbO
ro = (t >>1) | (t & 0x01)

t = (unsi gned short)a7 + (unsigned short)hb7
r7 = (unsigned char)((t >> 1) | (t & 0x01))

_mpavgwW__nb64 a, _ nbB4 bh)

Computes the (rounded) averages of the unsigned words in a and b.
t = (unsigned int)a0 + (unsigned int)b0

ro =(t > 1) | (t & 0x01)

t = (unsigned word)a7 + (unsigned word)b7

r7 = (unsigned short)((t >> 1) | (t & 0x01))

Intel® C++ Intrinsics Reference

__nb4 mpsadbw(__nb4 a, _ nb64 b)

Computes the sum of the absolute differences of the unsigned bytes in a and b,

returning he value in the lower word. The upper three words are cleared.
ro = abs(a0-b0) +... + abs(a7-b7)
ri=r2=r3=20

Memory and Initialization Using Streaming SIMD Extensions

This section describes the | oad, set , and st or e operations, which let you load and store data
into memory. The | oad and set operations are similar in that both initialize ___mlL28 data.
However, the set operations take a float argument and are intended for initialization with

constants, whereas the | oad operations take a floating point argument and are intended to mimic
the instructions for loading data from memory. The St Or e operation assigns the initialized data

to the address.

The intrinsics are listed in the following table. Syntax and a brief description are contained the

following topics.

The prototypes for Streaming SIMD Extensions intrinsics are in the Xnmi nt ri n. h header file.

Intrinsic Alternate Operation Corresponding

Name Name Instruction

_mm | oad_ss Load the low value and MOVSS
clear the three high values

_mm | oad_ps1 _mm_ | oadl_ps | Load one value into all four | MOVSS +
words Shuffling

_mm | oad_ps Load four values, address | MOVAPS
aligned

_mm | oadu_ps Load four values, address | MOVUPS
unaligned

_mm | oadr _ps Load four values, in MOVAPS +
reverse order Shuffling

_m set _ss Set the low value and clear | Composite
the three high values

_mm set _psl _mmsetl_ps Set all four words with the | Composite
same value

_mm set _ps Set four values, address Composite
aligned

_mm setr_ps Set four values, in reverse | Composite
order

_mm set zero_ps Clear all four values Composite

_mmstore_ss Store the low value MOVSS

239

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Alternate Operation Corresponding
Name Name Instruction
_mmstore_psl |_mmstorel_ps | Store the low value across | Shuffling +

all four words. The address | MOVSS
must be 16-byte aligned.

_nmmstore_ps Store four values, address | MOVAPS
aligned

_nmm st oreu_ps Store four values, address | MOVUPS
unaligned

_mm storer_ps Store four values, in MOVAPS +
reverse order Shuffling

_mm _nove_ss Set the low word, and pass | MOVSS

in three high values

_mm get csr Return register contents STMXCSR

_mm.setcsr Control Register LDMXCSR

_mm prefetch

_mm st ream pi

_nmm st ream ps

_mm sfence

_mmcvtss _f32

_ nml28 _mm | oad_ss(fl oat const*a)

Loads an SP FP value into the low word and clears the upper three words.
ro := *a
ri:=0.0; r2:=0.0; r3:=0.0

_ nml28 _mm | oad_psl(float const*a)

Loads a single SP FP value, copying it into all four words.

ro := *a
rl .= *a
r2 .= *a
r3 := *a

_ nml28 mm | oad_ps(float const*a)
Loads four SP FP values. The address must be 16-byte-aligned.

ro := a[0]
ri:= a[l]
r2 := a[2]
r3 := a[3]

240

Intel® C++ Intrinsics Reference

_ nml28 mm | oadu_ps(float const*a)
Loads four SP FP values. The address need not be 16-byte-aligned.

ro := a[0]
ri:= a[l]
r2 := a[2]
r3 := a[3]

__nml28 _mm | oadr_ps(float const*a)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

ro := a[3]
ri:= a[2]
r2 := all1]
r3 := a[0]

_ nml28 _mm set _ss(float a)

Sets the low word of an SP FP value to a and clears the upper three words.
ro:=c
ri:=r2:=r3:=0.0

_ nml28 _mm set _psi(float a)

Sets the four SP FP values to a.
ro:=rl:=r2:=r3:=a

_ nml28 _mmset _ps(float a, float b, float c, float d)

Sets the four SP FP values to the four inputs.

ro := a
rl :=b
r2 :=oc
r3 :=d

_ nml28 mmsetr_ps(float a, float b, float ¢, float d)

Sets the four SP FP values to the four inputs in reverse order.

ro :=d
rli:.=c¢
rz :=b
r3 := a

__nml28 mm setzero_ps(void)

Clears the four SP FP values.
ro:=rl1:=r2:=r3 :=0.0

void _mm store_ss(float *v, _ ml28 a)
Stores the lower SP FP value.
*v = a0

void _mm store_psl(float *v, _ ml28 a)
Stores the lower SP FP value across four words.
v[0] := a0
v[1l] := a0
v[2] := a0
v[3] := a0

void mmstore_ps(float *v, _ ml28 a)
Stores four SP FP values. The address must be 16-byte-aligned.
v[0] := a0
v[1l] := al
v[2] := a2
v[3] := a3

241

Intel® C++ Compiler for Linux* Systems User's Guide

void _

void _

28

unsi gn

mm storeu_ps(float *v, _ nml28 a)

Stores four SP FP values. The address need not be 16-byte-aligned.
v[0] := a0

v[1l] := al

v[2] := a2

v[3] := a3

nmm storer_ps(float *v, _ nml28 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.
v[0] := a3

v[1l] := a2

v[2] := al

v[3] := a0

_mmnove_ss(__ml28 a, _ ml28 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed
through from a.

ro := bo
rl := al
r2 := a2
r3 := a3

ed int _mmgetcsr(void)

Returns the contents of the control register.

void _mm setcsr(unsigned int i)

voi d

voi d

voi d

voi d

fl oat

242

Sets the control register to the value specified.
nm prefetch(char const*a, int sel)

(uses PREFETCH) Loads one cache line of data from address a to a location
"closer" to the processor. The value sel specifies the type of prefetch
operation: the constants _ MM HI NT_TO, MM HI NT_T1, MM HI NT_T2,
and _MM _HI NT_NTA should be used for IA-32, corresponding to the type of
pr ef et ch instruction. The constants _ MM HI NT_T1, MM HI NT_NT1,

_ MM _HI NT_NT2, and _MM_HI NT_NTA should be used for Itanium®-based
systems.

_mmstreampi (__n64 *p, _ nb4 a)

(uses MOVNTQ) Stores the data in a to the address p without polluting the
caches. This intrinsic requires you to empty the multimedia state for the mmx
register. See The EMMS Instruction: Why You Need It and When to Use It
topic.

_mm stream ps(float *p, _ nl28 a)

(see MOVNTPS) Stores the data in a to the address p without polluting the
caches. The address must be 16-byte-aligned.

_mm sfence(voi d)

(uses SFENCE) Guarantees that every preceding store is globally visible before
any subsequent store.

_mmcvtss_f32(__ml28 a)

This intrinsic extracts a single precision floating point value from the first vector
element of an ___mL28. It does so in the most effecient manner possible in the
context used. This intrinsic doesn't map to any specific SSE instruction.

Intel® C++ Intrinsics Reference

Miscellaneous Intrinsics Using Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions intrinsics are in the Xnmi nt ri n. h header file.

Intrinsic Operation Corresponding
Name Instruction

_mm shuffl e_ps | Shuffle SHUFPS
_mm_unpackhi _ps | Unpack High UNPCKHPS
_mm_unpackl o_ps | Unpack Low UNPCKLPS

mm| oadh_pi Load High MOVHPS reg, mem
mm st or eh_pi Store High MOVHPS nem reg

_mm novehl _ps | Move High to Low | MOVHLPS

_mm rovel h_ps | Move Low to High | MOVLHPS

_mm | oadl _pi Load Low MOVLPS reg, nmem

_mm st orel _pi Store Low MOVLPS nem reg

_mm _novenmask_ps | Create four-bit mask | MOVIVBKPS

_ 28 mmshuffle ps(__m28 a, _ nml28 b, unsigned int imB)

Selects four specific SP FP values from a and b, based on the mask i 8. The
mask must be an immediate. See Macro Function for Shuffle Using Streaming
SIMD Extensions for a description of the shuffle semantics.

_ nml28 _mm unpackhi _ps(__ml28 a, _ ml28 b)

Selects and interleaves the upper two SP FP values from a and b.

ro := a2
rl := b2
r2 := a3
r3 := b3

_ nml28 _mm unpackl o_ps(__ml28 a, _ ml28 b)

Selects and interleaves the lower two SP FP values from a and b.

ro := a0
rl := b0
r2 := al
r3 := bl

__nml28 mmloadh _pi(__ml28, _ nbB4 const *p)
Sets the upper two SP FP values with 64 bits of data loaded from the address p.

ro := a0
ri:=al
r2 := *p0
r3 :=*pl

243

Intel® C++ Compiler for Linux* Systems User's Guide

void mmstoreh pi(__nb4 *p, _ nml28 a)
Stores the upper two SP FP values to the address p.
*pO := a2
*pl := a3

_ nml28 _mm novehl _ps(__nl28 a, _ ml28 b)

Moves the upper 2 SP FP values of b to the lower 2 SP FP values of the result.
The upper 2 SP FP values of a are passed through to the result.

r3 := a3
r2 := a2
rl := b3
ro := b2

_ nml28 mm novel h_ps(__ nl28 a, _ ml28 b)

Moves the lower 2 SP FP values of b to the upper 2 SP FP values of the result.
The lower 2 SP FP values of a are passed through to the result.

r3 := bl
r2 := bo
rl .= al
ro := a0

_ nml28 mmloadl pi(__m28 a, _ nb64 const *p)

Sets the lower two SP FP values with 64 bits of data loaded from the address p;
the upper two values are passed through from a.

ro := *p0
ri:=*pl
r2 := a2
r3 := a3

void _mmstorel _pi(__nb4 *p, _ ml28 a)

Stores the lower two SP FP values of a to the address p.
*pO := ao
*pl := al

int _nm novemask _ps(__ml28 a)

Creates a 4-bit mask from the most significant bits of the four SP FP values.
r :=sign(a3)<<3 | sign(a2)<<2 | sign(al)<<i
si gn(a0)

Using Streaming SIMD Extensions on Itanium® Architecture

The Streaming SIMD Extensions intrinsics provide access to Itanium® instructions for Streaming
SIMD Extensions. To provide source compatibility with the IA-32 architecture, these intrinsics are
equivalent both in name and functionality to the set of IA-32-based Streaming SIMD Extensions
intrinsics.

To write programs with the intrinsics, you should be familiar with the hardware features provided
by the Streaming SIMD Extensions. Keep the following issues in mind:

e Certain intrinsics are provided only for compatibility with previously-defined 1A-32
intrinsics. Using them on Itanium-based systems probably leads to performance degradation.
See section below.

* Floating-point (FP) data loaded stored as __ 28 objects must be 16-byte-aligned.

* Some intrinsics require that their arguments be immediates -- that is, constant integers
(literals), due to the nature of the instruction.

244

Intel® C++ Intrinsics Reference

Data Types

The new data type ___mL28 is used with the Streaming SIMD Extensions intrinsics. It represents a
128-bit quantity composed of four single-precision FP values. This corresponds to the 128-bit TA-
32 Streaming SIMD Extensions register.

The compiler aligns __ 28 local data to 16-byte boundaries on the stack. Global data of these
types is also 16 byte-aligned. To aligni nt eger, f | oat, or doubl e arrays, you can use the
decl spec alignment.

Because Itanium instructions treat the Streaming SIMD Extensions registers in the same way
whether you are using packed or scalar data, there isno ___nB2 data type to represent scalar data.
For scalar operations, use the ___ mlL28 objects and the "scalar" forms of the intrinsics; the
compiler and the processor implement these operations with 32-bit memory references. But, for
better performance the packed form should be substituting for the scalar form whenever possible.

The address of a __nl28 object may be taken.

For more information, see Intel Architecture Software Developer's Manual, Volume 2: Instruction
Set Reference Manual, Intel Corporation, doc. number 243191.

Implementation on Itanium-based systems

Streaming SIMD Extensions intrinsics are defined for the __nml28 data type, a 128-bit quantity
consisting of four single-precision FP values. SIMD instructions for Itanium-based systems
operate on 64-bit FP register quantities containing two single-precision floating-point values.
Thus, each __nl28 operand is actually a pair of FP registers and therefore each intrinsic
corresponds to at least one pair of Itanium instructions operating on the pair of FP register
operands.

Compatibility versus Performance

Many of the Streaming SIMD Extensions intrinsics for Itanium-based systems were created for
compatibility with existing IA-32 intrinsics and not for performance. In some situations, intrinsic
usage that improved performance on IA-32 will not do so on Itanium-based systems. One reason
for this is that some intrinsics map nicely into the IA-32 instruction set but not into the Itanium
instruction set. Thus, it is important to differentiate between intrinsics which were implemented
for a performance advantage on Itanium-based systems, and those implemented simply to provide
compatibility with existing IA-32 code.

The following intrinsics are likely to reduce performance and should only be used to initially port
legacy code or in non-critical code sections:

e Any Streaming SIMD Extensions scalar intrinsic (_SS vari ety) - use packed (_ps)
version if possible

e com anducom Streaming SIMD Extensions comparisons - these correspond to IA-32
COM SS and UCOM SS instructions only. A sequence of Itanium instructions are required
to implement these.

» Conversions in general are multi-instruction operations. These are particularly expensive:
_mm cvtpi 16_ps,_mm cvt pul6_ps, nm cvtpi 8_ps,_mm cvt pud_ps,
_mm cvt pi 32x2_ps, _mm cvtps_pi 16, _mMm cvtps_pi 8

» Streaming SIMD Extensions utility intrinsic _nm _novenmask_ps

If the inaccuracy is acceptable, the SIMD reciprocal and reciprocal square root approximation
intrinsics (r cp and r sqr t) are much faster than the true di v and sqr t intrinsics.

245

Intel® C++ Compiler for Linux* Systems User's Guide

Macro Function for Shuffle Using Streaming SIMD Extensions

The Streaming SIMD Extensions provide a macro function to help create constants that describe
shuffle operations. The macro takes four small integers (in the range of 0 to 3) and combines them
into an 8-bit immediate value used by the SHUFPS instruction. See the example below.

Shuffle Function Macro

_MM EHUFFLE(=, ¥, x,17)
S* expands to the following walus *7F
(z=<g) | (y=<d) | (x<=Z)| w

You can view the four integers as selectors for choosing which two words from the first input
operand and which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

127 u}
;oml = [a[blcld]
127 0
;mz = [E[flalw]
w2 = mm shuffle psiml, wmZ,
_MM EHUFFLE(1l,.0,3.Z))
1&7 1]
;w3 = (g [hlalb]

Macro Functions to Read and Write the Control Registers

The following macro functions enable you to read and write bits to and from the control register.
For details, see Set Operations. For Itanium®-based systems, these macros do not allow you to
access all of the bits of the FPSR. See the descriptions for the get f psr () and set f psr ()
intrinsics in the Native Intrinsics for Itanium Instructions topic.

Exception State Macros Macro Arguments
_MM_SET_EXCEPTI ON_STATE(x) _MM_EXCEPT_I NVALI D
_MM_GET_EXCEPTI ON_STATE() _MM_EXCEPT_DI V_ZERO

_MM_EXCEPT_DENORM

Macro Definitions _ MM _EXCEPT_OVERFLOW
Write to and read from the sixth-least significant control
register bit, respectively.

_MM_EXCEPT_UNDERFLOW

_MM_EXCEPT_| NEXACT

246

Intel® C++ Intrinsics Reference

The following example tests for a divide-by-zero exception.

Exception State Macros with _MM_EXCEPT_DIV_ZERO

if (_MM GET_EXCEPTION 3TATE(x] & _MM_EXCEPT_DIV_ZER0)

J* Ewmception har occurred *f

}

Exception Mask Macros Macro Arguments
_MM_SET_EXCEPTI ON_MASK(x) _MM_MASK_| NVALI D
_MM_GET_EXCEPTI ON_MASK () _MM_MASK_DI V_ZERO

_MM_MASK_DENORM

M acr o Definitions _MM_MASK_OVERFLOW
Write to and read from the seventh through twelfth
control register bits, respectively.

Note: All six exception mask bits are always affected.
Bits not set explicitly are cleared.

_MM_MASK_UNDERFLOW

_MM_MASK_| NEXACT

The following example masks the overflow and underflow exceptions and unmasks all other
exceptions.

Exception Mask with _MM_MASK_OVERFLOW and _MM_MASK_UNDERFLOW

_MM_SET_EXCEPTI ON_MASK(MM_MASK_OVERFLOW | _ MM _MASK_UNDERFLOW

Rounding Mode Macro Arguments
_MM_SET_ROUNDI NG_MODE(x) _ MM _ROUND_NEAREST
_MM_GET_ROUNDI NG_MODE() _VMM_ROUND_DOWN

M acro Definition _ MM ROUND_UP

Write to and read from bits thirteen and fourteen of the
control register.

_MM_ROUND_TOWARD_ZERO

The following example tests the rounding mode for round toward zero.

Rounding Mode with _MM_ROUND_TOWARD_ZERO

if (_MM _GET_ROUNDI NG MODE() == _MVI ROUND_TOWARD_ZERO) {
* Roundi ng node is round toward zero */

— ~ —

247

Intel® C++ Compiler for Linux* Systems User's Guide

Flush-to-Zero Mode Macro Arguments
_MM SET_FLUSH_ZERO MODE(x) _MM FLUSH ZERO ON
_MM GET_FLUSH_ZERO MODE() _MM FLUSH_ZERO CFF

Macr o Definition
Write to and read from bit fifteen of the control register.

The following example disables flush-to-zero mode.

Flush-to-Zero Mode with _ MM_FLUSH_ZERO_OFF

_MM_SET_FLUSH_ZERO MODE(_MM FLUSH_ZERO OFF)

Macro Function for Matrix Transposition

The Streaming SIMD Extensions also provide the following macro function to transpose a 4 by 4
matrix of single precision floating point values.

_ MM TRANSPOSE4 _PS(row0, rowl, row2, rowd)

The arguments r ow0, r owl, r ow2, and r ow3 are __mL28 values whose elements form the
corresponding rows of a 4 by 4 matrix. The matrix transposition is returned in arguments r ow0,
rowl, r ow2, and r ow3 where r owO now holds column 0 of the original matrix, r owl now
holds column 1 of the original matrix, and so on.

The transposition function of this macro is illustrated in the "Matrix Transposition Using the
MMV TRANSPOSE4_PS" figure.

Matrix Transposition Using _MM_TRANSPOSE4_ PS Macro

| Kg e e Vi el K | My is My

el | ¥y]] tewl | Yo | Wa Ya fa
: : L —
|i.v.'-:?'; Xa i Fa | W rowe Zn 1 La Ea
oW Xa ¥a i Wi rowrd | Wk Wiy W Wy |
lenst irweal leasl sl
siggilicarnl sigrEbaant sk boant shrafican i
ebamien ek efesmel el

LAGEI

248

Intel® C++ Intrinsics Reference

Streaming SIMD Extensions 2

This section describes the C++ language-level features supporting the Intel® Pentium® 4
processor Streaming SIMD Extensions 2 in the Intel® C++ Compiler, which are divided into two
categories:

* Floating-Point Intrinsics -- describes the arithmetic, logical, compare, conversion, memory,
and initialization intrinsics for the double-precision floating-point data type (__nml28d).

* Integer Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and
initialization intrinsics for the extended-precision integer data type (___nil28i).

f) Note

The Pentium 4 processor Streaming SIMD Extensions 2 intrinsics are defined only for IA-32
platforms, not Itanium®-based platforms. Pentium 4 processor Streaming SIMD Extensions 2
operate on 128 bit quantities -- 2 64-bit double precision floating point values. The Itanium
processor does not support parallel double precision computation, so Pentium 4 processor
Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

For more details, refer to the Pentium® 4 processor Sreaming SSMD Extensions 2 External
Architecture Specification (EAS) and other Pentium 4 processor manuals available for download
from the developer.intel.com web site. You should be familiar with the hardware features provided
by the Streaming SIMD Extensions 2 when writing programs with the intrinsics. The following
are three important issues to keep in mind:

e Certain intrinsics, such as _mm | oadr _pd and _nm cnpgt _sd, are not directly
supported by the instruction set. While these intrinsics are convenient programming aids, be
mindful of their implementation cost.

e Data loaded or stored as ___nL28d objects must be generally 16-byte-aligned.

* Some intrinsics require that their argument be immediates, that is, constant integers
(literals), due to the nature of the instruction.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

Floating-point Arithmetic Operations for Streaming SIMD
Extensions 2

The arithmetic operations for the Streaming SIMD Extensions 2 are listed in the following table
and are followed by descriptions of each intrinsic.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Corresponding | Operation RO R1

Name Instruction Value Value

_mm add_sd | ADDSD Addition a0 [op] bO|al

_mm add_pd | ADDPD Addition a0 [op] bOfal [op] bl
_mm sub_sd | SUBSD Subtraction a0 [op] bO|al

_mm sub_pd |SUBPD Subtraction a0 [op] bOfal [op] bl
_mm ml _sd | MJLSD Multiplication a0 [op] bO|al

249

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Corresponding | Operation RO R1

Name Instruction Value Value
_mm.mul _pd | MILPD Multiplication a0 [op] bO|al [op] bl
_mmdiv_sd |DVSD Division a0 [op] bO|al
_mmdiv_pd |DI VPD Division a0 [op] bO|al [op] bl
_mm sqrt_sd | SQRTSD Computes Square Root [a0 [op] b0 |al

_mm sqrt_pd | SQRTPD Computes Square Root |@a0 [op] bO|al [op] bl
_mm.nmn_sd |MNSD Computes Minimum |a0 [op] bOfal
_mm.nin_pd | M NPD Computes Minimum |a0 [op] bO|al [op] bl
_mm max_sd [MAXSD Computes Maximum |a0 [op] bO|al

_mm max_pd [MAXPD Computes Maximum |a0 [op] bO|al [op] bl

_ nml28d _mm add_sd(__nl28d a,

__ml28d b)

Adds the lower DP FP (double-precision, floating-point) values of a and b ; the
upper DP FP value is passed through from a.

ro =
rl =

_ nml28d _mm add_pd(__nl28d a,

a0 + bO
al

__mi28d b)

Adds the two DP FP values of a and b.

ro =
rl =

_ nml28d _mm sub_sd(__nl28d a,

a0 + bO
al + bl

__ml28d b)

Subtracts the lower DP FP value of b from a. The upper DP FP value is passed
through from a.

ro =
rli:=

_ nl28d _mm sub_pd(__nl28d a,

a0 -
al

b0

__ni28d b)

Subtracts the two DP FP values of b from a.

ro :
rl:

_ nml28d _mmmul _sd(__nl28d a,

a0 -
al -

b0
bl

__ni28d b)

Multiplies the lower DP FP values of @ and b. The upper DP FP is passed
through from a.

ro .=
rli .=

_ nml28d _mmmul _pd(__nl28d a,

a0 *
al

b0

__ni28d b)

Multiplies the two DP FP values of a and b.

ro .=
rli .=

250

a0 *
al *

b0
bl

Intel® C++ Intrinsics Reference

_ mi28d _mmdiv_sd(__ni28d a, __ml28d b)

Divides the lower DP FP values of @ and b. The upper DP FP value is passed

through from a.
ro := a0 / bO
ri:=al

_ mi28d _mmdiv_pd(__ni28d a, __ml28d b)

Divides the two DP FP values of a and b.
ro := a0 / bo
rl :=al/ bl

_ nml28d mmsqgrt_sd(__ml28d a, _ ml28d b)

Computes the square root of the lower DP FP value of b. The upper DP FP

value is passed through from a.
ro := sqrt(b0)
ri:=al

_ nml28d _mmsqrt_pd(__ml28d a)

Computes the square roots of the two DP FP values of a.
ro := sqrt(a0)
ri := sqrt(al)

_ nml28d _mmmn_sd(__nml28d a, __ ml28d b)

Computes the minimum of the lower DP FP values of a and b. The upper DP FP
value is passed through from a.

ro := mn (a0, bO0)

ri:=al

_ nml28d _mmmn_pd(__nml28d a, __ ml28d b)

Computes the minima of the two DP FP values of a and b.
ro := mn(a0, b0)
ri := mn(al, bl)

_ nml28d _mm max_sd(__nml28d a, __ ml28d b)

Computes the maximum of the lower DP FP values of a and b. The upper DP

FP value is passed through from a.
ro := max (a0, bO0)
ri:=al

_ nml28d _mm max_pd(__nml28d a, __ ml28d b)

Computes the maxima of the two DP FP values of a and b.
ro := max(a0, b0)
ri := max(al, bl)

Logical Operations for Streaming SIMD Extensions 2
The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

_ nml28d _mmand_pd(__nml28d a, __ ml28d b)

(uses ANDPD) Computes the bitwise AND of the two DP FP values of a and b.
ro := a0 & b0
ri:=al &bl

_ nml28d _mm andnot pd(__ml28d a, _ ml28d b)

(uses ANDNPD) Computes the bitwise AND of the 128-bit value in b and the
bitwise NOT of the 128-bit value in a.

ro := (~a0) & bo

ri:=(~al) &bl

251

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28d mmor _pd(__nl28d a, _ nil28d b)

(uses ORPD) Computes the bitwise OR of the two DP FP values of a and b.
ro := a0 | b0
ri:=al| bl

_ nml28d _mm xor_pd(__nml28d a, __ ml28d b)

(uses XORPD) Computes the bitwise XOR of the two DP FP values of a and b.
ro := a0 ™ bO
rli:=al "~ bl

Comparison Operations for Streaming SIMD Extensions 2

Each comparison intrinsic performs a comparison of a and b. For the packed form, the two DP FP
values of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower DP
FP values of a and b are compared, and a 64-bit mask is returned; the upper DP FP value is
passed through from a. The mask is set to OXf f fff ffff f ffffff for each element where the
comparison is true and 0x0 where the comparison is false. The r following the instruction name
indicates that the operands to the instruction are reversed in the actual implementation. The
comparison intrinsics for the Streaming SIMD Extensions 2 are listed in the following table
followed by detailed descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Name Corresponding Instruction | Compare For:
_mm cnpeq_pd CMPEQPD Equality
_mmecnplt_pd CVPLTPD Less Than

_mm cnpl e_pd CMPLEPD Less Than or Equal
_mm cnpgt _pd CVPLTPDr Greater Than

_mm cnpge_pd CVPLEPDr Greater Than or Equal
_mm cnpord_pd CMPORDPD Ordered

_mm cnpunord_pd | CMPUNORDPD Unordered

_mm cnpneq_pd CVPNEQPD Inequality
_mmecnpnlt_pd CVPNLTPD Not Less Than

_mm cnpnl e_pd CMPNLEPD Not Less Than or Equal
_mm cnpngt _pd CVPNLTPDx Not Greater Than
_mm cnpnge_pd CVPLEPDr Not Greater Than or Equal
_mm cnpeg_sd CMPEQSD Equality
_mmecenplt_sd CVMPLTSD Less Than

252

Intel® C++ Intrinsics Reference

Intrinsic Name

Corresponding Instruction

Compare For:

_mm cnpl e_sd CMPLESD Less Than or Equal
_mm cnpgt _sd CMPLTSDr Greater Than

_mm cnpge_sd CMPLESDr Greater Than or Equal
_mm cnpord_sd CMPORDSD Ordered

_mm cnpunord_sd | CMPUNORDSD Unordered

_mm cnpneq_sd CMPNEQSD Inequality
_mmecnpnlt_sd CMPNLTSD Not Less Than
_mm cnpnl e_sd CMPNLESD Not Less Than or Equal
_mm cnpngt _sd CMPNLTSDr Not Greater Than
_mm cnpnge_sd CMPNLESDR Not Greater Than or Equal
_nmm comi eqg_sd COM SD Equality
_mmcomlt_sd COM sSD Less Than
_mmcomil e_sd COM SD Less Than or Equal
_mm comi gt _sd COM SD Greater Than

_mm comi ge_sd COM SD Greater Than or Equal
_mm comi neq_sd | COM SD Not Equal

_mm ucom eq_sd | UCOM SD Equality

_mmucom lt_sd |[UCOM SD Less Than
_mmucomle_sd |[UCOM SD Less Than or Equal
_mmucom gt _sd |[UCOM SD Greater Than
_mm.ucom ge_sd | UCOM SD Greater Than or Equal
_mm ucom neqg_sd [UCOM SD Not Equal

253

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28d _mmcnpeq_pd(__nl28d a, _ nil28d b)

Compares the two DP FP values of a and b for equality.
ro := (a0 == b0) ? Oxffffffffffffffff : OxO
ri:=(al == bl) ? Oxffffffffffffffff : OxO

~ nml28d mmecnplt_pd(_ _nl28d a, _ nil28d b)

Compares the two DP FP values of @ and b for a less than b.
ro := (a0 < b0) ? Oxffffffffffffffff . OxO
rl:=(al < bl) ? Oxffffffffffffffff . OxO

_ m28d mmcnple pd(__m28d a, _ ml28d b)

Compares the two DP FP values of a and b for a less than or equal to b.
ro := (a0 <= b0) ? Oxffffffffffffffff : OxO
ri:=(al <= bl) ? Oxffffffffffffffff : OxO

_ nml28d _mmcnpgt_pd(__nl28d a, _ nl28d b)

Compares the two DP FP values of a and b for a greater than b.
ro := (a0 > b0) ? Oxffffffffffffffff . OxO
rli:=(al > bl) ? Oxffffffffffffffff : OxO

_ nml28d _mm cnpge_pd(__nl28d a, _ nl28d b)

Compares the two DP FP values of for a greater than or equal to b.
0 := (a0 >= b0) ? Oxfff ffffffff : OxO
1 :=(al >= bl) ? Oxfff ffffffff : OxO

aandb
fEfff
fffff
__n128d _mmcnpord_pd(__ml28d a, __ ml28d b)
a
f
f

f
f

Compares the two DP FP values of for ordered.
:= (a0 ord b0) ? Oxff frfffff : OxO
:= (al ord bl) ? Oxff fffffff : OxO

__n128d _nnLcnpunord_pd(__nﬂZSd a, _ m28d b)

Compares the two DP FP values of a and b for unordered.
.= (a0 unord b0) ? Oxffffffffffffffff . OxO
= (al unord bl) ? Oxffffffffffffffff : OxO

__n128d _nnLcnpneq_pd (__nl28d a, _ nl28d b)

and b
frffff
frffff

Compares the two DP FP values of a and b for inequality.
= (a0 '=Db0) ? Oxffffffffffffffff : OxO
= (al '=Dbl) ? Oxffffffffffffffff : OxO

__n128d _nnLcnpnIt_pd(__nﬂZSd a, _ m28d b)

Compares the two DP FP values of @ and b for a not less than b.
ro :=1(a0 < b0) ? Oxffffffffffffffff : OxO
rl:=1(al < bl) ? Oxffffffffffffffff . OxO

_ nml28d mmcnpnle_pd(__m28d a, _ ml28d b)

Compares the two DP FP values of @ and b for a not less than or equal to b.
ro :=1!(a0 <= b0) ? Oxffffffffffffffff : OxO
ri:=1(al <= bl) ? Ooxffffffffffffffff : OxO

_ nml28d _mmcnpngt _pd(__m28d a, _ ml28d b)

Compares the two DP FP values of a and b for a not greater than b.
ro :=1(a0 > b0) ? Oxffffffffffffffff : OxO
ri:=1(al > bl) ? Oxffffffffffffffff : OxO

_ nml28d _mmcnpnge_pd(__ml28d a, _ ml28d b)

Compares the two DP FP values of a and b for a not greater than or equal to b.
ro :=1!(a0 >= b0) ? Oxffffffffffffffff : OxO
rli:=1!(al >= bl) ? Oxffffffffffffffff : OxO

254

Intel® C++ Intrinsics Reference

_ nml28d _mmcnpeq_sd(__nl28d a, _ nil28d bh)

Compares the lower DP FP value of a and b for equality. The upper DP FP

value is passed through from a.
ro := (a0 == b0) ? Oxffffffffffffffff : OxO
ri:=al

_ nml28d mmecenplt_sd(__nl28d a, _ nil28d b)

Compares the lower DP FP value of a and b for a less than b. The upper DP FP

value is passed through from a.
ro := (a0 < b0) ? Oxffffffffffffffff : OxO
rr:=il

_ nml28d _mmcnple_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a less than or equal to b. The

upper DP FP value is passed through from a.
ro := (a0 <= b0) ? Oxffffffffffffffff : OxO
ri:=al

_ nml28d _mmcnpgt_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a greater than b. The upper DP

FP value is passed through from a.
ro := (a0 > b0) ? Oxffffffffffffffff . OxO
ri :=al

_ nml28d _mm cnpge_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a greater than or equal to b.

The upper DP FP value is passed through from a.
ro := (a0 >= b0) ? Oxffffffffffffffff : OxO
ri:=al

_ nml28d _mmcnpord_sd(__ml28d a, _ ml28d b)

Compares the lower DP FP value of a and b for ordered. The upper DP FP

value is passed through from a.
ro := (a0 ord b0) ? Oxffffffffffffffff : OxO
ri:=al

_ nml28d _mm cnpunord_sd(__nl28d a, __ ml28d b)

Compares the lower DP FP value of a and b for unordered. The upper DP FP

value is passed through from a.
ro := (a0 unord b0) ? Oxffffffffffffffff : OxO
ri:=al

_ nml28d _mm cnpneq_sd(__ml28d a, _ ml28d b)

Compares the lower DP FP value of a and b for inequality. The upper DP FP

value is passed through from a.
ro := (a0 !'=b0) ? Oxffffffffffffffff : OxO
ri:=al

_ nml28d _mmecnpnlt_sd(__m28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a not less than b. The upper DP

FP value is passed through from a.
ro:="!(a0 < b0) ? Oxffffffffffffffff : OxO
ri:=al

_ nml28d _mmcnpnle_sd(__m28d a, _ ml28d b)

Compares the lower DP FP value of @ and b for a not less than or equal to b.

The upper DP FP value is passed through from a.
ro :=1!(a0 <= b0) ? Oxffffffffffffffff : OxO
ri:=al

255

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28d _mmcnpngt _sd(__ml28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a not greater than b. The upper

DP FP value is passed through from a.
ro :=1!(a0 > b0) ? Oxffffffffffffffff : OxO
ri:=al

_ nml28d _mmcnpnge_sd(__ml28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a not greater than or equal to b.

The upper DP FP value is passed through from a.
ro :=1!(a0 >= b0) ? Oxffffffffffffffff : OxO
ri:=al

int _nmcomeq_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are

equal, 1 is returned. Otherwise 0 is returned.
r := (a0 == b0) ? 0Ox1 : 0xO

int _mmcom |t _sd(__nl28d a, _ nil28d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than

b, 1 is returned. Otherwise 0 is returned.
r := (a0 < b0) ? Ox1 : OxO

int _mmcomle sd(__nl28d a, _ nil28d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is

less than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0Ox1 : 0xO

int _nmmcomgt _sd(__nl28d a, _ nil28d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater

than b are equal, 1 is returned. Otherwise 0 is returned.
r := (a0 > b0) ? Ox1 : 0OxO

int _nmcomge_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If

a is greater than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0Ox1 : 0xO

int _nmcom neq_sd(__nl28d a, __ _ml28d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are

not equal, 1 is returned. Otherwise 0 is returned.
r := (a0 !'= b0) ? Ox1 : 0xO

int _nmucom eq_sd(__nl28d a, __ _ml28d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are

equal, 1 is returned. Otherwise 0 is returned.
r := (a0 == b0) ? Ox1 : 0xO

int _mmuconmlt_sd(__nl28d a, _ ml28d b)

Compares the lower DP FP value of @ and b for a less than b. If a is less than

b, 1 is returned. Otherwise 0 is returned.
r := (a0 < b0) ? Ox1 : OxO

int _nmmuconile_sd(__nml28d a, __ ml28d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is

less than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0Ox1 : 0xO

256

Intel® C++ Intrinsics Reference

int _nmucom gt _sd(__nl28d a, __ ml28d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater

than b are equal, 1 is returned. Otherwise 0 is returned.
r := (a0 > b0) ? 0Ox1 : Ox0

int _nmuconige sd(__nml28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If
a is greater than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0Ox1 : 0xO0

int _nmucom neq_sd(__ml28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a not equal to b. If @ and b are

not equal, 1 is returned. Otherwise 0 is returned.
r := (a0 !'= b0) ? Ox1 : 0OxO0

Conversion Operations for Streaming SIMD Extensions 2

Each conversion intrinsic takes one data type and performs a conversion to a different type. Some
conversions such as_nm cvt pd_ps result in a loss of precision. The rounding mode used in
such cases is determined by the value in the MXCSR register. The default rounding mode is
round-to-nearest. Note that the rounding mode used by the C and C++ languages when performing
a type conversion is to truncate. The _nmm cvtt pd_epi 32 and_nm cvtt sd_si 32 intrinsics
use the truncate rounding mode regardless of the mode specified by the MXCSR register.

The conversion-operation intrinsics for Streaming SIMD Extensions 2 are listed in the following
table followed by detailed descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Corresp_onding Return Parameters

Name Instruction Type

_mm cvt pd_ps CVTPD2PS _ nml28 |(__ml28d a)

_mm cvt ps_pd CVTPS2PD _ nml28d | (__ml28 a)

_mm cvtepi 32_pd | CVTDQ@PD _ nml28d | (__ml28i a)

_mm cvt pd_epi 32 | CVTPD2DQ _ ml28i |(__m28d a)

_mm cvtsd_si 32 CvTSD2SI i nt (__m28d a)
_mmcvtsd_ss CVTSD2SS _ nml28 |(__m28 a, __ml28d b)
_mm cvtsi 32 _sd CVTSI 2SD _ ml28d | (__ml28d a, int b)
_mm cvtss_sd CVTSS2SD _ nml28d | (__m28d a, _ ml28 b)
_mm cvttpd_epi 32 | CVITPD2DQ _ ml28i |(__m28d a)
_mmecvttsd si 32 | CVITSD2SI i nt (__m28d a)

_mm cvt pd_pi 32 CVTPD2PI __nb4 (__m28d a)

257

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Corresponding | Return Parameters
Name Instruction Type
_mmcvttpd_pi 32 | CVTTPD2PI b4 (__m28d a)
_mm cvt pi 32_pd CVTPI 2PD _ ml28d | (__nmb64 a)
_mmcvtsd _f64 None double |(__nl28d a)

_ nml28 mmecvtpd ps(__ ml28d a)
Converts the two DP FP values of a to SP FP values.

ro := (float) a0
ri:= (float) al
rz:=0.0; r3:=0.0

_ nml28d _mmcvtps_pd(__nl28 a)

Converts the lower two SP FP values of a to DP FP values.
ro := (double) a0
rl := (double) al

_ nl28d _mm cvtepi 32_pd(__nl28i a)

Converts the lower two signed 32-bit integer values of a to DP FP values.
ro := (double) a0
rli := (double) al

_ nml28i _mmcvtpd_epi 32(__nl28d a)

Converts the two DP FP values of a to 32-bit signed integer values.

ro := (int) a0
ri:=(int) al
r2z :=0x0; r3 := 0x0

int _nmmecvtsd si32(__nl28d a)

Converts the lower DP FP value of a to a 32-bit signed integer value.
r :=(int) a0

_ nml28 mmecvtsd ss(__ml28 a, _ ml28d b)

Converts the lower DP FP value of b to an SP FP value. The upper SP FP values

in a are passed through.
ro := (float) b0
rl :=al;, r2:=a2; r3 := a3

_ nml28d _mmcvtsi 32 sd(__ml28d a, int b)

Converts the signed integer value in b to a DP FP value. The upper DP FP value

in a is passed through.
ro := (double) b
ri:=al

_ nml28d mmcvtss_sd(_ nl28d a, _ nl28 b)

Converts the lower SP FP value of b to a DP FP value. The upper value DP FP

value in a is passed through.
ro := (double) b0
ri:=al

258

Intel® C++ Intrinsics Reference

_ nml28i _mmcvttpd_epi 32(__m28d a)

Converts the two DP FP values of a to 32-bit signed integers using truncate.

ro := (int) a0
ri:= (int) al
rz :=0x0; r3 := 0x0

int _nmecvttsd_si32(__ml28d a)

Converts the lower DP FP value of a to a 32-bit signed integer using truncate.
r :=(int) a0

n64 _nmm cvtpd_pi 32(__nl28d a)

Converts the two DP FP values of a to 32-bit signed integer values.
ro := (int) a0
ri:= (int) al

__nB4 mmecvttpd_pi32(__m28d a)

Converts the two DP FP values of a to 32-bit signed integer values using

truncate.
ro := (int) a0
ri:= (int) al

_ nml28d _mm cvtpi 32_pd(__nbB4 a)

Converts the two 32-bit signed integer values of a to DP FP values.
ro := (double) a0
rli := (double) al

_mmcvtsd_f64(__m28d a)

This intrinsic extracts a double precision floating point value from the first
vector element of an ___ mL28d. It does so in the most efficient manner possible
in the context used. This intrinsic does not map to any specific SSE2 instruction.

Streaming SIMD Extensions 2 Floating-point Memory and
Initialization Operations

This section describes the | oad, set , and st or e operations, which let you load and store data
into memory. The | oad and set operations are similar in that both initialize ___nl28d data.
However, the set operations take a double argument and are intended for initialization with
constants, while the | oad operations take a double pointer argument and are intended to mimic
the instructions for loading data from memory. The St Or e operation assigns the initialized data
to the address.

f)Note

There is no intrinsic for move operations. To move data from one register to another, a simple
assignment, A = B, suffices, where A and B are the source and target registers for the move
operation.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt r i n. h header file.

259

Intel® C++ Compiler for Linux* Systems User's Guide

Load Operations for Streaming SIMD Extensions 2

The following load operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
__nml28d _mm | oad_pd(doubl e const*dp)
(uses MOVAPD) Loads two DP FP values. The address p must be 16-byte

aligned.
ro := p[0]
ri:= p[1]

_ nml28d _mm | oadl_pd(doubl e const *dp)

(uses MOVSD + shuffling) Loads a single DP FP value, copying to both
elements. The address p need not be 16-byte aligned.

ro:=*p

ri.==*p

_ nml28d _mm | oadr_pd(doubl e const *dp)

(uses MOVAPD + shuffling) Loads two DP FP values in reverse order. The

address p must be 16-byte aligned.
ro := p[1]
ri := p[O]

_ nml28d _mm | oadu_pd(doubl e const *dp)
(uses MOVUPD) Loads two DP FP values. The address p need not be 16-byte

aligned.
ro := p[0]
ri:= p[1]

_ nml28d _mm | oad_sd(doubl e const*dp)

(uses MOVSD) Loads a DP FP value. The upper DP FP is set to zero. The address
p need not be 16-byte aligned.

ro:=*p

ri:=0.0

_ nml28d _mm | oadh_pd(__nl28d a, doubl e const*dp)

(uses MOVHPD) Loads a DP FP value as the upper DP FP value of the result.
The lower DP FP value is passed through from a. The address p need not be 16-

byte aligned.
ro := a0
ri .==*p

_ nml28d _mm | oadl _pd(__nl28d a, doubl e const*dp)

(uses MOVLPD) Loads a DP FP value as the lower DP FP value of the result.
The upper DP FP value is passed through from a. The address p need not be 16-

byte aligned.
ro:=*p
ri :=al

260

Intel® C++ Intrinsics Reference

Set Operations for Streaming SIMD Extensions 2

The following Set operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
_ nl28d _mm set_sd(double w)
(composite) Sets the lower DP FP value to wand sets the upper DP FP value to

Z€10.
ro :=w
rl :=0.0

_ nml28d _mMm setl pd(double w)

(composite) Sets the 2 DP FP values to w.
ro:=w
ri:=w

_ nml28d _mm set _pd(doubl e w, double x)
(composite) Sets the lower DP FP value to x and sets the upper DP FP value to

W,
ro :=x
ri:=w

_ nml28d _mm setr_pd(doubl e w, double x)
(composite) Sets the lower DP FP value to wand sets the upper DP FP value to

X.
ro :=w
rli :=x

_ nml28d _mm setzero_pd(void)

(uses XORPD) Sets the 2 DP FP values to zero.
ro :=0.0
ri:=0.0

_ nml28d _mmnmove_sd(_ nl28d a, _ nil28d b)

(uses MOVSD) Sets the lower DP FP value to the lower DP FP value of b. The
upper DP FP value is passed through from a.
ro := bo
ri:

Store Operations for Streaming SIMD Extensions 2

The following St or e operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

al

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt r i n. h header file.
void mm store_sd(double *dp, _ nil28d a)

(uses MOVSD) Stores the lower DP FP value of a. The address dp need not be
16-byte aligned.
*dp := a0

void mm storel pd(double *dp, _ ml28d a)

(uses MOVAPD + shuffling) Stores the lower DP FP value of a twice. The
address dp must be 16-byte aligned.

dp[0] a0

dpl[1] a0

261

Intel® C++ Compiler for Linux* Systems User's Guide

void _mm store_pd(double *dp, _ nil28d a)
(uses MOVAPD) Stores two DP FP values. The address dp must be 16-byte

aligned.
dp[0] := a0
dp[1] := al

void _mm storeu_pd(double *dp, _ ml28d a)
(uses MOVUPD) Stores two DP FP values. The address dp need not be 16-byte

aligned.
dp[0] := a0
dp[1] := al

void _mm storer_pd(double *dp, _ ml28d a)

(uses MOVAPD + shuffling) Stores two DP FP values in reverse order. The

address dp must be 16-byte aligned.
dp[0] al
dp[1] a0

void _mm storeh_pd(double *dp, _ ml28d a)

(uses MOVHPD) Stores the upper DP FP value of a.
*dp := al

void _mm storel _pd(double *dp, _ ml28d a)
(uses MOVLPD) Stores the lower DP FP value of a.
*dp := a0
Miscellaneous Operations for Streaming SIMD Extensions 2

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
_ nml28d _mmunpackhi _pd(__nl28d a, __ ml28d b)

(uses UNPCKHPD) Interleaves the upper DP FP values of & and b.
ro:= al
ri:= bl

_ nml28d _mmunpackl o_pd(__nl28d a, __ ml28d b)

(uses UNPCKL PD) Interleaves the lower DP FP values of a and b.
ro := ao
ri:= bo

int _nm novemask pd(__ ml28d a)

(uses MOVMBKPD) Creates a two-bit mask from the sign bits of the two DP FP
values of a.
r := sign(al) << 1 | sign(a0)

_ nml28d mmshuffle pd(__nml28d a, _ nl28d b, int i)

(uses SHUFPD) Selects two specific DP FP values from a and b, based on the
mask i . The mask must be an immediate. See Macro Function for Shuffle for a
description of the shuffle semantics.

262

Intel® C++ Intrinsics Reference

Integer Arithmetic Operations for Streaming SIMD Extensions 2

The integer arithmetic operations for Streaming SIMD Extensions 2 are listed in the following
table followed by their descriptions. The packed arithmetic intrinsics for Streaming SIMD
Extensions 2 are listed in the Floating-point Arithmetic Operations topic.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Instruction | Operation

_mm add_epi 8 PADDB Addition

_mm add_epi 16 PADDW Addition

_mm add_epi 32 PADDD Addition

_mm add_si 64 PADDQ Addition

_mm add_epi 64 PADDQ Addition

_mm adds_epi 8 PADDSB Addition

_mm adds_epi 16 | PADDSW Addition

_mm adds_epu8 PADDUSB | Addition

_mm adds_epul6 |PADDUSW | Addition

_mm avg_epu8 PAVGB Computes Average

_mm avg_epul6 PAVGW Computes Average

_mm madd_epi 16 | PMADDWD | Multiplication/Addition

_mm_max_epi 16 PMAXSW Computes Maxima

_nmm _max_epu8 PVAXUB Computes Maxima

_mm._m n_epi 16 PM NSW Computes Minima

_mm_m n_epu8 PM NUB Computes Minima

_mm rmul hi _epi 16 | PMULHW Multiplication

_mm_nul hi _epul6 | PMULHUW | Multiplication

~mmmul |l o_epi 16 | PMULLW Multiplication

_mm mul _su32 PMULUDQ | Multiplication

_mm mul _epu32 PMULUDQ | Multiplication

263

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Instruction | Operation

_mm sad_epu8 PSADBW Computes Difference/Adds

_mm sub_epi 8 PSUBB Subtraction

_mm sub_epi 16 PSUBW Subtraction

_mm sub_epi 32 PSUBD Subtraction
_mm sub_si 64 PSUBQ Subtraction
_mm sub_epi 64 PSUBQ Subtraction

_mm subs_epi 8 PSUBSB Subtraction

_mm subs_epi 16 | PSUBSW Subtraction

_mm subs_epu8 PSUBUSB [Subtraction

_mm subs_epul6 |PSUBUSW | Subtraction

_ mml28i _nm add_epi 8(__ml28i a, _ ml28i b)

Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or unsigned

8-bit integers in b.
ro := a0 + b0
rl:=al + bl

r15 := als + bl5
__ mml28i _mm add_epi 16(__nl28i a, _ nl28i b)

Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned

16-bit integers in b.

ro := a0 + bo
rl :=al + bl
'r'7':: a7’ + b7

_ ml28i _mm add_epi 32(__m28i a, _ ml28i b)

Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned

32-bit integers in b.

ro := a0 + b0
rl :=al + bl
r2z := a2 + b2
r3 := a3 + b3

__nB4 mm add_si64(__nb4 a, _ _nb4 b)

Adds the signed or unsigned 64-bit integer a to the signed or unsigned 64-bit

integer b.
r:=a+b

264

Intel® C++ Intrinsics Reference

_ ml28i _mm add_epi 64(__ml28i a, _ ml28i b)

Adds the 2 signed or unsigned 64-bit integers in a to the 2 signed or unsigned
64-bit integers in b.
ro := a0 + b0
ri:=al + bl

_ ml28i _mm adds_epi 8(__ml28i a, _ ml28i b)

Adds the 16 signed 8-bit integers in a to the 16 signed 8-bit integers in b using
saturating arithmetic.

ro := SignedSaturate(a0 + bO0)

rl := SignedSaturate(al + bl)

ri5 := Si gnedSat ur at e(al5 + bl5)

_ ml28i _mm adds_epi 16(__nml28i a, _ nl28i b)

Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b using
saturating arithmetic.

rO := SignedSaturate(a0 + bO0)
rl := SignedSaturate(al + bl)
(7= Si gnedSat urate(a7 + b7)

_ ml28i _mm adds_epu8(__ml28i a, _ ml28i b)

Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in b
using saturating arithmetic.

ro := UnsignedSaturate(a0 + bO)

rl := UnsignedSaturate(al + bl)

ri5 : = Unsi gnedSat ur at e(al5 + bl5)

_ nml28i _mm adds_epul6(__nml28i a, _ nl28i b)

Adds the 8 unsigned 16-bit integers in a to the 8 unsigned 16-bit integers in b
using saturating arithmetic.

ro := UnsignedSaturate(a0 + b0)

rl := UnsignedSaturate(al + bl)

ri5 : = Unsi gnedSat urate(a7 + b7)

_ nml28i _mm avg_epu8(__nl28i a, _ nl28i b)

Computes the average of the 16 unsigned 8-bit integers in a and the 16 unsigned
8-bit integers in b and rounds.

ro := (a0 + b0) / 2

ri:=(al + bl) / 2

ri15 := (al5 + bl5) / 2

_ nml28i _mm avg_epul6(__m28i a, _ ml28i b)

Computes the average of the 8 unsigned 16-bit integers in a and the 8 unsigned
16-bit integers in b and rounds.

ro := (a0 + b0) / 2
ri:=(al + bl) / 2
r7 := (a7 + b7) | 2

265

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28i _mmmadd_epi 16(__nml28i a, _ nl28i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers
from b. Adds the signed 32-bit integer results pairwise and packs the 4 signed
32-bit integer results.

ro := (a0 * b0) + (al * bil)
ri:= (a2 * b2) + (a3 * b3)
r2 := (a4 * b4) + (a5 * bb)
r3 := (a6 * b6) + (a7 * b7)

_ ml28i _mm max_epi 16(__ml28i a, _ ml28i b)

Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8
signed 16-bit integers from b.

ro : = max(a0, b0)
ri := max(al, bl)
r7 = max(a7, b7)

_ nml28i _mmmax_epu8(__nl28i a, _ nl28i b)

Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the
16 unsigned 8-bit integers from b.

ro := max(a0, b0)

ri := max(al, bl)

ri5 : = max(al5, blb)
_ ml28i _mmmn_epil16(__m28i a, _ ml28i b)

Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8
signed 16-bit integers from b.

ro := mn(a0, b0)
ri:= mn(al, bl)
r7 := mn(a7, b7)

_ ml28i _mmmn_epu8(__nl28i a, _ nl28i b)

Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the
16 unsigned 8-bit integers from b.

ro := mn(a0, b0)

ri := mn(al, bl)

ri5 := nin(al5, bl5)
_ nml28i _mm mul hi _epi 16(__nl28i a, __ ml28i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers
from b. Packs the upper 16-bits of the 8 signed 32-bit results.

ro := (a0 * b0)[31:16]
ri:= (al * bl)[31:16]
r7 := (a7 * b7)[31: 16]

_ nml28i _mmnmul hi _epul6(__nl28i a, _ ml28i b)

Multiplies the 8 unsigned 16-bit integers from a by the 8 unsigned 16-bit
integers from b. Packs the upper 16-bits of the 8 unsigned 32-bit results.

ro := (a0 * b0)[31:16]
ri:= (al * bl)[31:16]
r7 := (a7 * b7)[31:16]

266

Intel® C++ Intrinsics Reference

_ nml28i _mmnullo_epi 16(__nml28i a, _ nl28i b)

n64

Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or
unsigned 16-bit integers from b. Packs the lower 16-bits of the 8 signed or
unsigned 32-bit results.

ro := (a0 * b0)[15:0]
rl := (al * bl)[15:0]
r7 := (a7 * b7)[15:0]
~mmmul _su32(__nb4 a, __nb64 b)

Multiplies the lower 32-bit integer from a by the lower 32-bit integer from b,

and returns the 64-bit integer result.
r := a0 * bO

_ ml28i _mmnmul _epu32(__ml28i a, _ ml28i b)

Multiplies 2 unsigned 32-bit integers from a by 2 unsigned 32-bit integers from
b. Packs the 2 unsigned 64-bit integer results.

ro := a0 * bO

ri:= a2 * b2

_ nml28i _mmsad_epu8(__nl28i a, _ nl28i bh)

Computes the absolute difference of the 16 unsigned 8-bit integers from a and
the 16 unsigned 8-bit integers from b. Sums the upper 8 differences and lower 8
differences, and packs the resulting 2 unsigned 16-bit integers into the upper and
lower 64-bit elements.

ro := abs(a0 - b0) + abs(al - bl) +...+ abs(a7 - b7)
rlt :=0x0; r2 :=0x0; r3 := 0x0

rd4 := abs(a8 - b8) + abs(a9 - b9) +...+ abs(al5 - blb)
r5 :=0x0; r6 :=0x0; r7 := 0x0

_ nml28i _mmsub_epi8(__nl28i a, _ nl28i b)

Subtracts the 16 signed or unsigned 8-bit integers of b from the 16 signed or
unsigned 8-bit integers of a.

ro := a0 - b0

rl:=al - bl

r15 := al5 - bis

_ nml28i _mm sub_epi 16(__nl28i a, _ nl28i b)

Subtracts the 8 signed or unsigned 16-bit integers of b from the 8 signed or
unsigned 16-bit integers of a.

ro := a0 - boO
rl :=al - bl
k?':: a7 - b7

_ ml28i _mmsub_epi 32(__m28i a, _ ml28i b)

__nb4

Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or
unsigned 32-bit integers of a.

ro := a0 - bO
rl :=al - bl
r2z := a2 - b2
r3 := a3 - b3
_mmsub_si64 (__nmb4 a, __nbB4 b)

Subtracts the signed or unsigned 64-bit integer b from the signed or unsigned
64-bit integer a.
r:=a->mb

267

Intel® C++ Compiler for Linux* Systems User's Guide

_ ml28i _mmsub_epi 64(__m28i a, _ ml28i b)

Subtracts the 2 signed or unsigned 64-bit integers in b from the 2 signed or

unsigned 64-bit integers in a.
ro := a0 - bO
rl:=al - bl

_ ml28i _mmsubs_epi 8(__ml28i a, _ ml28i b)

Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers of a

using saturating arithmetic.
ro := SignedSaturate(a0 - b0)
rl := SignedSaturate(al - bl)

ri5 ;= Si gnedSat ur at e(al5 - blb5)
_ ml28i _mm subs_epi 16(__nml28i a, _ nl28i b)

Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers of a
using saturating arithmetic.

ro := SignedSaturate(a0 - bO0)
rl := SignedSaturate(al - bl)
r7 = Si gnedSaturate(a7 - b7)

_ ml28i _mm subs_epu8(__ml28i a, _ ml28i b)

Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit integers

of a using saturating arithmetic.
ro := UnsignedSaturate(a0 - b0)
rl := UnsignedSaturate(al - bl)

ri5 : = Unsi gnedSat ur at e(al5 - blb5)
_ nml28i _mm subs_epul6(__ nml28i a, _ nl28i b)

Subtracts the 8 unsigned 16-bit integers of b from the 8 unsigned 16-bit integers
of a using saturating arithmetic.

ro := UnsignedSaturate(a0 - b0)
rl := UnsignedSaturate(al - bl)
r7 = Unsi gnedSat urate(a7 - b7)

Integer Logical Operations for Streaming SIMD Extensions 2

The following four logical-operation intrinsics and their respective instructions are functional as
part of Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.
_ ml28i _mmand_si 128(__ml28i a, _ ml28i b)

(uses PAND) Computes the bitwise AND of the 128-bit value in a and the 128-
bit value in b.
r:=aé&hb

_ ml28i _mm andnot _si 128(__ml28i a, _ ml28i b)

(uses PANDN) Computes the bitwise AND of the 128-bit value in b and the
bitwise NOT of the 128-bit value in a.
r:=(~a) &b

268

Intel® C++ Intrinsics Reference

_ nml28i _mmor_si128(__nl28i a, _ nl28i b)

(uses POR) Computes the bitwise OR of the 128-bit value in a and the 128-bit
value in b.
r:=ajl b

_ ml28i _mmxor_si128(__ml28i a, _ ml28i b)

(uses PXOR) Computes the bitwise XOR of the 128-bit value in a and the 128-
bit value in b.
r:=an”hb

Integer Shift Operations for Streaming SIMD Extensions 2

The shift-operation intrinsics for Streaming SIMD Extensions 2 and the description for each are
listed in the following table.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Shift Direction | Shift Type | Corresponding Instruction
~mmslli_sil28]|Left Logical PSLLDQ
_mmslli_epi16|Left Logical PSLLW
_mmsl|_epi 16 |Left Logical PSLLW
_mmslli_epi32|Left Logical PSLLD
_mmsll_epi 32 |Left Logical PSLLD
_mmslli_epi64|Left Logical PSLLQ
_mm sl | _epi 64 |Left Logical PSLLQ
_mm srai _epi 16 | Right Arithmetic | PSRAW
_mmsra_epi 16 |Right Arithmetic | PSRAW
_mm_srai _epi 32 | Right Arithmetic | PSRAD
_mm.sra_epi 32 |Right Arithmetic | PSRAD
_mmsrli_si 128 |Right Logical PSRLDQ
_mm.srli_epi 16 |Right Logical PSRLW
_mmsrl_epi 16 |Right Logical PSRLW
_mm.srli_epi 32| Right Logical PSRLD
_mmsrl_epi 32 |Right Logical PSRLD
_mm srli_epi 64 |Right Logical PSRLQ

269

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Shift Direction | Shift Type | Corresponding Instruction

_mmsrl _epi 64 |Right Logical PSRLQ

_ 28 _mmslli_si128(__ml28i a, int inm

Shifts the 128-bit value in a left by i mmbytes while shifting in zeros. i MMmust
be an immediate.
rr:.=a<< (imm?=* 8)

_ nml28i _mmslli_epil6(__nml28i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
shifting in zeros.

ro := a0 << count
rl := al << count
}7':= a7 << count

_ 28 _mmsll_epil6(__m28i a, __ ml28i count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
shifting in zeros.

ro := a0 << count
rl .= al << count
}7':= a7 << count

_ nml28i _mmslli_epi32(__nml28i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
shifting in zeros.

rO : = a0 << count
rl .= al << count
r2 := a2 << count
r3 := a3 << count

_ nml28i _mmsll _epi32(__ml28i a, __ ml28i count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
shifting in zeros.

rO : = a0 << count
rl .= al << count
r2 := a2 << count
r3 := a3 << count

_ nml28i mmslli_epi64(__nml28i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while
shifting in zeros.

ro := a0 << count

rli := al << count

_ nml28i _mmsll _epi64(__m28i a, _ ml28i count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while
shifting in zeros.

ro := a0 << count

ri := al << count

270

Intel® C++ Intrinsics Reference

_ ml28i _mmsrai_epi16(__nml28i a, int count)
Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the

sign bit.

rO : = a0 >> count
rl .= al >> count
k?':: a7 >> count

_ ml28i _mmsra_epil6(__m28i a, _ ml28i count)
Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the

sign bit.

rO : = a0 >> count
rl := al >> count
k?':: a7 >> count

_ ml28i _mmsrai_epi32(__ml28i a, int count)
Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the

sign bit.

roO := a0 >> count
rl := al >> count
r2 := a2 >> count
r3 := a3 >> count

_ ml28i _mmsra_epi32(__m28i a, __ml28i count)
Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the

sign bit.

ro := a0 >> count
rl := al >> count
r2 := a2 >> count
r3 :=1i3 >> count

_ 28 _mmsrli_si128(__ml28i a, int inm

Shifts the 128-bit value in a right by i nmbytes while shifting in zeros. i nm

must be an immediate.
r :=srl(a, imr38)

_ ml28i _mmsrli_epil16(__nml28i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while
shifting in zeros.

ro := srl (a0, count)
ri := srl(al, count)
r7 = srl (a7, count)

_ nml28i _mmsrl_epi16(__m28i a, __ ml28i count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while
shifting in zeros.

ro := srl (a0, count)
ri := srl(al, count)
r7 = srl (a7, count)

_ nml28i _mmsrli_epi32(__nml28i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while
shifting in zeros.

ro := srl (a0, count)
ri := srl(al, count)
r2 :=srl (a2, count)
r3 := srl(a3, count)

271

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28i _mmsrl_epi32(__m28i a, __ ml28i count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while
shifting in zeros.

ro := srl (a0, count)
rl := srl(al, count)
r2 :=srl (a2, count)
r3 := srl(a3, count)

_ nml28i _mmsrli_epi64(__nml28i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while
shifting in zeros.

ro := srl (a0, count)

rl := srl(al, count)

_ nml28i _mmsrl_epi64(__ml28i a, __ ml28i count)
Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while
shifting in zeros.
ro := srl (a0, count)
rl := srl(al, count)
Integer Comparison Operations for Streaming SIMD Extensions
2

The comparison intrinsics for Streaming SIMD Extensions 2 and descriptions for each are listed in
the following table.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Name Instruction | Comparison | Elements | Size of
Elements

_mm cnpeq_epi 8 | PCMPEQB Equality 16 8

_m cnpeq_epi 16 | PCMPEQW | Equality 8 16
_mm cnpeq_epi 32 | PCMPEQD | Equality 4 32
_mmcnpgt _epi 8 | PCMPGIB | Greater Than | 16 8
_nmm cnpgt _epi 16 | PCMPGTW | Greater Than | 8 16
_mm cnpgt _epi 32 | PCMPGTD | Greater Than | 4 32
_mmecnplt_epi 8 |[PCMPGTBr | Less Than 16 8
~mmecnplt_epi 16 | PCMPGTW | Less Than 8 16
_mmecnplt_epi 32 | PCMPGTDr | Less Than 4 32

272

Intel® C++ Intrinsics Reference

_ ml28i _mmcnpeq_epi 8(__nml28i a, _ nl28i b)

Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or

unsigned 8-bit integers in b for equality.
ro := (a0 == b0) ? Oxff : OxO
rli:= (al == bl) ? Oxff : 0OxO

ri5 := (al5 == b15) ? Oxff : OxO

_ ml28i _mmcnpeq_epi 16(__nl28i a, _ ml28i b)

Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or
unsigned 16-bit integers in b for equality.

ro := (a0 == b0) ? Oxffff : OxO
ri:= (al == bl) ? Oxffff : OxO
r7 := (a7 == b7) ? Oxffff : OxO

_ ml28i _mm cnpeqg_epi 32(__nml28i a, __ml28i b)

Compares the 4 signed or unsigned 32-bit integers in a and the 4 signed or
unsigned 32-bit integers in b for equality.

ro := (a0 == b0) ? Oxffffffff 0x0
ri:=(al == bl) ? Oxffffffff : OxO
r2 := (a2 == b2) ? oxffffffff : OxO
r3 := (a3 == b3) ? Oxffffffff 0x0

_ ml28i _mmcnpgt_epi 8(__ml28i a, _ nl28i b)

Compares the 16 signed 8-bit integers in @ and the 16 signed 8-bit integers in b
for greater than.

ro := (a0 > b0) ? Oxff : 0OxO
ri:=(al > bl) ? Oxff : 0OxO

r15 := (al5 > b15) ? Oxff : OxO

_ ml28i _mmcnpgt_epi 16(__nl28i a, __ ml28i b)

Compares the 8 signed 16-bit integers in @ and the 8 signed 16-bit integers in b
for greater than.

ro := (a0 > b0) ? Oxffff 0x0
ri:= (al > bl) ? Oxffff 0x0
r7 := (a7 > b7) ? Oxffff : 0xO

_ ml28i _mmcnpgt_epi 32(__nl28i a, __ ml28i b)

Compares the 4 signed 32-bit integers in @ and the 4 signed 32-bit integers in b
for greater than.

ro := (a0 > b0) ? Oxffff : 0OxO
ri:= (al > bl) ? Oxffff : 0xO
r2 := (a2 > b2) ? Oxffff 0x0
r3 := (a3 > b3) ? Oxffff 0x0

_ nml28i _mmecenplt _epi8(_ nml28i a, _ ml28i b)

Compares the 16 signed 8-bit integers in @ and the 16 signed 8-bit integers in b
for less than.

ro := (a0 < b0) ? Oxff : 0OxO

ri:= (al < bl) ? Oxff : OxO

ri5 := (al5 < b15) ? Oxff : OxO

273

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28i mmecenplt _epi16(_ ml28i a, _ ml28i b)

Compares the 8 signed 16-bit integers in @ and the 8 signed 16-bit integers in b
for less than.

ro := (a0 < b0) ? Oxffff : 0OxO
ri:=(al < bl) ? Oxffff : 0OxO
r7 := (a7 < b7) ? Oxffff : OxO

_ nml28i mmecenplt _epi32(_ ml28i a, _ ml28i b)

Compares the 4 signed 32-bit integers in @ and the 4 signed 32-bit integers in b
for less than.

ro := (a0 < b0) ? Oxffff 0x0
ri:=(al < bl) ? Oxffff : 0OxO
r2 := (a2 < b2) ? oxffff : 0xO
r3 := (a3 < b3) ? Oxffff 0x0

Conversion Operations for Streaming SIMD Extensions 2

The following two conversion intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

_ ml28i _mmcvtsi 32 si128(int a)

(uses MOVD) Moves 32-bit integer a to the least significant 32 bits of an
__ml28i object. Copies the sign bit of & into the upper 96 bits of the
__ml28i object.
ro :=a
ro:=0x0; r2:=0x0; r3 := 0x0

int _nmecvtsi 128 si32(__ml28i a)
(uses MOVD) Moves the least significant 32 bits of a to a 32 bit integer.
r := a0

_ nml28 _mmcvtepi 32_ps(__ml28i a)

Converts the 4 signed 32-bit integer values of a to SP FP values.

ro := (float) a0
ri:= (float) al
r2 := (float) a2
r3 := (float) a3

_ ml28i _mmcvtps_epi 32(__nl28 a)

Converts the 4 SP FP values of a to signed 32-bit integer values.

ro := (int) a0
ri:= (int) al
r2 .= (int) a2
r3 := (int) a3

_ nml28i _mmcvttps_epi 32(__m28 a)

Converts the 4 SP FP values of a to signed 32 bit integer values using truncate.

ro := (int) a0
ri:= (int) al
r2 :=(int) a2
r3 :=(int) a3

274

Intel® C++ Intrinsics Reference

Macro Function for Shuffle

The Streaming SIMD Extensions 2 provide a macro function to help create constants that describe
shuffle operations. The macro takes two small integers (in the range of 0 to 1) and combines them
into an 2-bit immediate value used by the SHUFPD instruction. See the following example.

Shuffle Function Macro

_MM IHTFFLE: (x, v)

expands to the vahe of
[mdl] | o

You can view the two integers as selectors for choosing which two words from the first input
operand and which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

e e
i o

mi = _we_staffle_pdiml, mi, M SHUFFLES(1,0)

: = 127 [
g I

Cacheability Support Operations for Streaming SIMD Extensions

2

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
void _nmm stream pd(double *p, _ nl28d a)

(uses MOVNTPD) Stores the data in a to the address p without polluting caches.
The address p must be 16-byte aligned. If the cache line containing address p is
already in the cache, the cache will be updated.

p[O] a0

p[1] al

void _mm stream si 128(__nl28i *p, _ ml28i a)

Stores the data in a to the address p without polluting the caches. If the cache
line containing address p is already in the cache, the cache will be updated.
Address p must be 16-byte aligned.
*pi=a

void _mm streamsi 32(int *p, int a)
Stores the data in a to the address p without polluting the caches. If the cache

line containing address p is already in the cache, the cache will be updated.
* -
p:=a

void _mmcl flush(void const*p)

Cache line containing p is flushed and invalidated from all caches in the
coherency domain.

void _mm | fence(void)

Guarantees that every load instruction that precedes, in program order, the load
fence instruction is globally visible before any load instruction which follows
the fence in program order.

275

Intel® C++ Compiler for Linux* Systems User's Guide

void _mm nfence(void)

Guarantees that every memory access that precedes, in program order, the
memory fence instruction is globally visible before any memory instruction
which follows the fence in program order.

voi d _nm pause(voi d)

The execution of the next instruction is delayed an implementation specific
amount of time. The instruction does not modify the architectural state. This
intrinsic provides especially significant performance gain and described in more
detail below.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic
execution (especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at
which the code detects the release of the lock. For dynamic scheduling, the PAUSE instruction
reduces the penalty of exiting from the spin-loop.

Example of loop with the PAUSE instruction:

spi n | oop: pause
cnp eax, A
jne spin_loop

In the above example, the program spins until memory location A matches the value in register
eax. The code sequence that follows shows a test-and-test-and-set. In this example, the spin
occurs only after the attempt to get a lock has failed.

get _lock: mov eax, 1

xchg eax, A ; Try to get |ock
cnp eax, 0 ; Test if successfu
jne spin_loop

critical section code

mov A, O ; Release |ock

jmp continue

spi n_l oop: pause ; Spin-loop hint
cnp 0, A ; Check lock availability
jne spin_loop

jmp get | ock

conti nue:

Note that the first branch is predicted to fall-through to the critical section in anticipation of
successfully gaining access to the lock. It is highly recommended that all spin-wait loops include
the PAUSE instruction. Since PAUSE is backwards compatible to all existing [A-32 processor
generations, a test for processor type (a CPUI D test) is not needed. All legacy processors will
execute PAUSE as a NOP, but in processors which use the PAUSE as a hint there can be significant
performance benefit.

276

Intel® C++ Intrinsics Reference

Miscellaneous Operations for Streaming SIMD Extensions 2

The miscellaneous intrinsics for Streaming SIMD Extensions 2 are listed in the following table
followed by their descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Corresponding | Operation
Instruction

_mm packs_epi 16 PACKSSVB Packed Saturation

_mm packs_epi 32 PACKSSDW Packed Saturation

_mm packus_epi 16 PACKUSV\B Packed Saturation

_mm extract _epi 16 PEXTRW Extraction

_mm.insert_epi 16 Pl NSRW Insertion

_mm nmovenmask_epi 8 PMOVIVSKB Mask Creation

_mm shuffle_epi 32 PSHUFD Shuffle

_mm shuffl ehi _epi 16 PSHUFHW Shuffle

_mm shufflel o_epi 16 PSHUFLW Shuffle

_mm unpackhi _epi 8 PUNPCKHBW Interleave

_mm unpackhi _epi 16 PUNPCKHWD Interleave

_mm unpackhi _epi 32 PUNPCKHDQ Interleave

_mm unpackhi _epi 64 PUNPCKHQDQ | Interleave

_mm unpackl o_epi 8 PUNPCKLBW Interleave

_mm unpackl o_epi 16 PUNPCKLWD Interleave

_mm unpackl o_epi 32 PUNPCKLDQ Interleave

_mm unpackl o_epi 64 PUNPCKLQDQ | Interleave

_mm _novepi 64_pi 64 MOVDQ2Q move

_ml28i _mm novpi 64_epi 64 | MOVQR2DQ move

_mm nove_epi 64 MOVQ move

277

Intel® C++ Compiler for Linux* Systems User's Guide

_ ml28i _mm packs_epi 16(__nl28i a, __ ml28i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit integers and
saturates.
rO : = SignedSat urate(a0)

rl := SignedSaturate(al)
r7 = Si gnedSat ur at e(a7)
r8 : = SignedSaturate(b0)
r9 := SignedSaturate(bl)

ri5 : = Si gnedSat ur at e(b7)
_ ml28i _mm packs_epi 32(__nl28i a, __ ml28i b)

Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and
saturates.
rO : = SignedSat urate(a0)

rl := SignedSaturate(al)
r2 := SignedSaturate(a2)
r3 := SignedSaturate(a3)
r4 := SignedSaturate(b0)
r5 := SignedSaturate(bl)
ré := SignedSaturate(b2)
r7 := SignedSaturate(b3)

_ ml28i _mm packus_epi 16(__ml28i a, _ ml28i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit unsigned integers
and saturates.

ro : = Unsi gnedSat urat e(a0)
ri := UnsignedSaturate(al)
r7 = Unsi gnedSat ur at e(a7)
r8 : = UnsignedSat urate(b0)
r9 := UnsignedSaturate(bl)

ri5 : = Unsi gnedSat ur at e(b7)
int _nmextract_epi16(__ml28i a, int im
Extracts the selected signed or unsigned 16-bit integer from a and zero extends.
The selector i MMmust be an immediate.
r:=(imm==0) ? a0
((imm==1) ? al :
(imm==7) 2 a7)
_ ml28i _mminsert_epi16(__m28i a, int b, int im

Inserts the least significant 16 bits of b into the selected 16-bit integer of a. The
selector i MMmust be an immediate.

ro:=(imm==20) ? b : ao0;
ri:=(imm==1) ? b : al
r7 = (imTmm==7) ? b : a7,

int _nm novemask epi 8(__ml28i a)

Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned
8-bit integers in a and zero extends the upper bits.

r := al5[7] << 15

al4[7] << 14

al[7] << 1 |

ao[7]

278

Intel® C++ Intrinsics Reference

_ nml28i _mmshuffle epi32(__nl28i a, int inmm

Shuffles the 4 signed or unsigned 32-bit integers in a as specified by i mm The
shuffle value, i mm must be an immediate. See Macro Function for Shuffle for a
description of shuffle semantics.

_ ml28i _mmshufflehi _epi16(__m28i a, int inm

Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified by i nm
The shuffle value, i MM must be an immediate. See Macro Function for Shuffle
for a description of shuffle semantics.

_ nml28i _mmshufflelo_epi16(__ml28i a, int inm

Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified by i mm
The shuffle value, i MM must be an immediate. See Macro Function for Shuffle
for a description of shuffle semantics.

_ ml28i _mmunpackhi _epi8(__nl28i a, _ nl28i b)

Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8
signed or unsigned 8-bit integers in b.

ro :=a8 ; rl1 :=
r2 :=a9; r3 := b9

r14 := al5 ; r15 := bl5
_ nml28i _mm unpackhi _epi 16(_ml28i a, __ _ml28i b)

Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4
signed or unsigned 16-bit integers in b.

ro:=a4 ; rl1 := b4
r2 := a5 ; r3 := b5
r4 := a6 ; r5 := b6
ré := a7 ; r7 := b7

_ nml28i _mm unpackhi _epi 32(_ml28i a, __ _ml28i b)

Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2

signed or unsigned 32-bit integers in b.
ro:=a2; rl1 := b2
r2 :=a3; r3 := b3

_ nml28i _mm unpackhi _epi 64(_ml28i a, __ _ml28i b)

Interleaves the upper signed or unsigned 64-bit integer in a with the upper

signed or unsigned 64-bit integer in b.
ro:=al; rl1:=Dbl

_ nml28i _mmunpackl o_epi 8(__nl28i a, _ nl28i b)

Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8
signed or unsigned 8-bit integers in b.

ro :=a0 ; rl := b0
r2 :=al; r3 := Dbl
fi& = a7 ; rl5 := b7
_ nml28i _mm unpackl o_epi 16(_ml28i a, __ ml28i b)

Interleaves the lower 4 signed or unsigned 16-bit integers in a with the lower 4
signed or unsigned 16-bit integers in b.

ro :=a0 ; rl := b0
rz :=al; r3 :=Dbl
r4 := a2 ; r5 := b2
ré := a3 ; r7 := b3

279

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28i _mmunpackl o_epi 32(_ml28i a, __ ml28i b)

Interleaves the lower 2 signed or unsigned 32-bit integers in a with the lower 2

signed or unsigned 32-bit integers in b.
ro :=a0; rl1 :=0b0
r2z:=al; r3:=Dhbl

_ nml28i _mmunpackl o_epi 64(__ml28i a, __ ml28i b)

Interleaves the lower signed or unsigned 64-bit integer in & with the lower

signed or unsigned 64-bit integer in b.
ro:=a0; rl1 :=hb0

n64 _nm novepi 64_pi 64(__ml28i a)

Returns the lower 64 bits of a as an __ 64 type.
ro := a0 ;

_128i _mm novpi 64_pi 64(_nb4 a)

Moves the 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.
ro:=a0; rl := 0X0 ,;

_128i _mm nove_epi 64(__128i a)

Moves the lower 64 bits of the lower 64 bits of the result, zeroing the upper bits.
ro:=a0; rl := 0X0 ;

Integer Memory and Initialization for Streaming SIMD Extensions
2

The integer | oad, set, and st or e intrinsics and their respective instructions provide memory
and initialization operations for the Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.
* Load Operations
* Set Operations

» Store Operations

Integer Load Operations for Streaming SIMD Extensions 2

The following | oad operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
_ nml28i _mmload_si128(__ml28i const*p)
(uses MOVDQA) Loads 128-bit value. Address p must be 16-byte aligned.
r:=*p
_ nml28i _mm| oadu_si 128(__nl28i const*p)
(uses MOVDQU) Loads 128-bit value. Address p not need be 16-byte aligned.
r:=*p
_ nml28i _mm| oadl _epi 64(__nl28i const*p)

(uses MOVQ) Load the lower 64 bits of the value pointed to by p into the lower

64 bits of the result, zeroing the upper 64 bits of the result.
ro: = *p[63:0]
r1: =0x0

280

Intel® C++ Intrinsics Reference

Integer Set Operations for Streaming SIMD Extensions 2

The following Set operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
_ nml28i _mmset _epi64(__n64 ql, _ nb4 q0)

Sets the 2 64-bit integer values.
ro :=qo
ri :.=ql

_ ml28i _mmset_epi32(int i3, int i2, int i1, int i0)

Sets the 4 signed 32-bit integer values.

ro :=io0
ri =il
r2z :=i2
r3 :=i3

_ nml28i _mmset _epi 16(short w7, short w6, short w5, short w4,
short w3, short w2, short wl, short wO)

Sets the 8 signed 16-bit integer values.

ro =
rli.=wl
}7':= w7

_ nml28i _mmset _epi8(char bl5, char bl4, char bl3, char bl2, char
bll, char bl10, char b9, char b8, char b7, char b6, char b5, char
b4, char b3, char b2, char bl, char b0)

Sets the 16 signed 8-bit integer values.

ro := b0
rl := bl
r15 : = bl5

_ nml28i _mmsetl epi 64(__nb4 q)

Sets the 2 64-bit integer values to .
ro :=g
ri:=g
_ ml28i _mmsetl epi32(int i)
Sets the 4 signed 32-bit integer values to i .
ro:=i
ri:

r2 :
r3 :

_ nml28i _mmsetl epi 16(short w)

Sets the 8 signed 16-bit integer values to W.

ro:=w
ri.=w
(7 = w

_ nml28i _mmsetl epi 8(char b)
Sets the 16 signed 8-bit integer values to b.

ro :=b
rl :=b
ri5 := b

281

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28i _mmsetr_epi 64(__nm64 q0, _ nb64 ql)

Sets the 2 64-bit integer values in reverse order.
ro :=qo0
ri :.=ql

_ nml28i _mmsetr_epi32(int i0, int i1, int i2, int i3)

Sets the 4 signed 32-bit integer values in reverse order.

ro :=io0
ri :=i1
rz :=i2
r3 :=i3

_ nml28i _mmsetr_epi 16(short w0, short wl, short w2, short w3,
short w4, short w5, short w6, short w7)

Sets the 8 signed 16-bit integer values in reverse order.

ro .=
rli.=wl
;?':: w7

nml28i _mm setr_epi 8(char bl5, char bl4, char bl3, char bl2, char

b11,
b4,

char b10, char b9, char b8, char b7, char b6, char b5,

char b3, char b2, char b1, char b0)

Sets the 16 signed 8-bit integer values in reverse order.

ro := b0
rl := bl
r15 : = bl5

_ nml28i _mm setzero_si 128()

Integer Store Operations for Streaming SIMD Extensions 2

Sets the 128-bit value to zero.
r .= 0x0

char

The following St or e operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.
void _mmstore_si128(__ ml28i *p, _ ml28i b)

(uses MOVDQA) Stores 128-bit value. Address p must be 16 byte aligned.
* R
p:=a

void mmstoreu_si128(__nl28i *p, _ ml28i b)

(uses MOVDQU) Stores 128-bit value. Address p need not be 16-byte aligned.
* R
p:=a

void _mm masknoveu_si 128(__ ml28i d, _ ml28i n, char *p)

(uses MASKMOVDQU) Conditionally store byte elements of d to address p. The
high bit of each byte in the selector n determines whether the corresponding
byte in d will be stored. Address p need not be 16-byte aligned.

if (nO[7]) p[O] := dO

if (nl[7]) p[1] di

if (n15[7]) p[15] := di5

void _mm storel _epi 64(__nml28i *p, _ ml28i Q)

282

(uses MOVQ) Stores the lower 64 bits of the value pointed to by p.
*p[63: 0] : =a0

Intel® C++ Intrinsics Reference

New IA-32 Intrinsics

The Intel C++ intrinsics listed in this section are designed for the Intel® Pentium® 4 processor
with Streaming SIMD Extensions 3 (SSE3). They will not function correctly on other IA-32
processors.

* Macro Functions
* Floating-point Vector Intrinsics
e Integer Vector Intrinsics

e Miscellaneous Intrinsics

Macro Functions

The macro function intrinsics listed below are designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3).

_MM_SET_DENORMALS_ZERO_MODE(X)

Macro arguments: one of __ MM DENCRMALS_ZERO ON,

_MMV DENORVALS_ZERO _OFF

This causes "denor mal s are zer 0" mode to be turned on or off by setting
the appropriate bit of the control register.

_MM_GET_DENORMALS_ZERO MODE()

No arguments. This returns the current value of the denormals are zero mode bit
of the control register.

Floating-point Vector Intrinsics

The floating-point intrinsics listed below are designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3).

Single-precision Floating-point Vector Intrinsics
extern _ nl28 _nmm addsub _ps(__ nl28 a, _ nl28 b);

Subtracts even vector elements while adding odd vector elements.

ro := a0 - boO;
rl :=al + bl;
r2z := a2 - bh2;
r3 := a3 + b3;

extern _ nml28 nm hadd _ps(__nl28 a, _ nl28 b);

Adds adjacent vector elements.

ro := a0 + al;
rl := a2 + a3;
r2 := bo + bil;
r3 := b2 + b3;

extern _ nml28 _nm hsub_ps(__nl28 a, _ nl28 b);

Subtracts adjacent vector elements.

ro := a0 - al;
rl := a2 - a3;
r2 := b0 - bi;
r3 := b2 - b3;

283

Intel® C++ Compiler for Linux* Systems User's Guide

extern _ nl28 _mm novehdup_ps(__nl28 a);

Duplicates odd vector elements into even vector elements.

ro := al;
rl .= al;
r2 := as3;
r3 := a3;

extern _ nl28 _mm novel dup_ps(__nl28 a);

Duplicates even vector elements into odd vector elements.

ro := ao;
rl := a0;
r2 := az2;
r3 := az2;

Double-precision Floating-point Vector Intrinsics
extern _ nml28d _mm addsub_pd(__ml28d a, __ _ml28d b);

Adds upper vector element while subtracting lower vector element.
ro := a0 - DbO;
ri:=al + bil;

extern _ nl28d _mm hadd_pd(__ml28d a, _ ml28d b);

Adds adjacent vector elements.
ro := a0 + al,
ri:= b0 + bil;

extern _ nl28d _mm hsub_pd(__ml28d a, _ nml28d b);

Subtracts adjacent vector elements.
ro:= a0 - al
ri:= b0 - bil;

extern _ nl28d _mm | oaddup_pd(doubl e const * dp);

Duplicates a double value into upper and lower vector elements.
ro := *dp;
ri:= *dp;

extern _ nl28d _mm novedup pd(__ml28d a);
Duplicates lower vector element into upper vector element.

ro : ao;
ril: ao;

Integer Vector Intrinsics

The integer vector intrinsic listed below is designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3).

extern _ nl28i _mmlddqu_si 128(__nl28i const *p);

Loads an unaligned 128-bit value. This differs from novdqu in that it can
provide higher performance in some cases. However, it also may provide lower
performance than novdqu if the memory value being read was just previously
written.

r.==*p;

284

Intel® C++ Intrinsics Reference

Miscellaneous Intrinsics

The miscellaneous intrinsics listed below are designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3).

extern void mmnonitor(void const *p

unsi gned ext ensi ons,
unsi gned hints);

Generates the MONI TOR instruction. This sets up an address range for the
monitor hardware using p to provide the logical address, and will be passed to
the monitor instruction in register eaX. The extensions parameter contains
optional extensions to the monitor hardware which will be passed in ecx. The
hints parameter will contain hints to the monitor hardware, which will be passed
in edx. A non-zero value for extensions will cause a general protection fault.

extern void _mm mnaait (unsi gned extensions, unsigned hints);

Generates the MAAI T instruction. This instruction is a hint that allows the
processor to stop execution and enter an implementation-dependent optimized
state until occurrence of a class of events. In future processor designs extensions
and hints parameters may be used to convey additional information to the
processor. All non-zero values of extensions and hints are reserved. A non-zero
value for extensions will cause a general protection fault.

Intrinsics for ltanium® Instructions

This section lists and describes the native intrinsics for Itanium® instructions. These intrinsics
cannot be used on the IA-32 architecture. The intrinsics for Itanium instructions give programmers
access to Itanium instructions that cannot be generated using the standard constructs of the C and
C++ languages.

The prototypes for these intrinsics are in the i a64i nt ri n. h header file.

Native Intrinsics for Itanium® Instructions

The prototypes for these intrinsics are in the i a64i nt ri n. h header file.

Integer Operations

Intrinsic Corresponding Instruction
_int64 64 dep_m(__int64 r, dep (Deposit)
__int64 s, const int pos, const
int len)
__int64 b4 _dep _m (const int v, dep (Deposit)
_int64 s, const int p, const int
[en)
_int64 _nb4 _dep_zr(__int64 s, dep. z (Deposit)
const int pos, const int |en)
__int64 _nmb4_dep_zi(const int v, dep. z (Deposit)
const int pos, const int |en)

int64 nb4 extr(int64 r, const |extr (Extract)
int pos, const int |en)

285

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Corresponding Instruction
_int64 b4 _extru(__int64 r, ext r. u (Extract)

const int pos, const int |en)

__int64 _nmb4_xmal (__int64 a, xma. | (Fixed-point multiply add using
__int64 b, __int64 c) the low 64 bits of the 128-bit result. The

result is signed.)

nt64 _n64_xmal u(__int64 a, xma. | u (Fixed-point multiply add using
__int64 b, __int64 c) the low 64 bits of the 128-bit result. The
result is unsigned.)

__int64 _nbB4_xnmah(__int64 a, xma. h (Fixed-point multiply add using

_int64 b, __int64 c) the high 64 bits of the 128-bit result. The
result is signed.)

__int64 _nb4_xmahu(__int64 a, xma. hu (Fixed-point multiply add using

_int64 b, __int64 c) the high 64 bits of the 128-bit result. The
result is unsigned.)

__int64 _nb4_popcnt(__int64 a) popcnt (Population count)

__int64 _nb4_shladd(__int64 a, shl add (Shift left and add)

const int count, _ int64 b)

__int64 _nmbB4_shrp(__int64 a, shr p (Shift right pair)

int64 b, const int count)

FSR Operations

Intrinsic Description

void _fsetc(int Sets the control bits of FPSR. sf 0. Maps to the f set c. sf0
amask, int omask) r, r instruction. There is no corresponding instruction to read
the control bits. Use _nmm get f psr ().

void _fclrf(void) Clears the floating point status flags (the 6-bit flags of
FPSR. sf 0). Maps to the f cl r f . sf O instruction.

_int64 nm64 dep_m(__int64 r, _ int64 s, const int pos, const int
[en)

The right-justified 64-bit value r is deposited into the value in S at an arbitrary
bit position and the result is returned. The deposited bit field begins at bit
position pos and extends to the left (toward the most significant bit) the number
of bits specified by | en.

286

Intel® C++ Intrinsics Reference

nt64 nb64 _dep_m (const int v, __int64 s, const int p, const

[en)

The sign-extended value v (either all 1s or all 0s) is deposited into the value in S
at an arbitrary bit position and the result is returned. The deposited bit field
begins at bit position p and extends to the left (toward the most significant bit)
the number of bits specified by | en.

nt64 nb64 dep zr(__int64 s, const int pos, const int |en)

The right-justified 64-bit value s is deposited into a 64-bit field of all zeros at an
arbitrary bit position and the result is returned. The deposited bit field begins at
bit position pos and extends to the left (toward the most significant bit) the
number of bits specified by | en.

nt 64 _nmb4_dep_zi (const int v, const int pos, const int |en)

The sign-extended value v (either all 1s or all 0s) is deposited into a 64-bit field
of all zeros at an arbitrary bit position and the result is returned. The deposited
bit field begins at bit position pos and extends to the left (toward the most
significant bit) the number of bits specified by | en.

nt64 _nmb4 _extr(__int64 r, const int pos, const int |en)

A field is extracted from the 64-bit value r and is returned right-justified and
sign extended. The extracted field begins at position pos and extends | en bits
to the left. The sign is taken from the most significant bit of the extracted field.

nt64 nb64 extru(__int64 r, const int pos, const int |en)

A field is extracted from the 64-bit value r and is returned right-justified and
zero extended. The extracted field begins at position pos and extends | en bits
to the left.

nt64 mb4 xmal (__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to
produce a full 128-bit signed result. The 64-bit value C is zero-extended and
added to the product. The least significant 64 bits of the sum are then returned.

nt64 nmb4 xmalu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to
produce a full 128-bit unsigned result. The 64-bit value C is zero-extended and
added to the product. The least significant 64 bits of the sum are then returned.

nt64 nb4 xmah(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to
produce a full 128-bit signed result. The 64-bit value C is zero-extended and
added to the product. The most significant 64 bits of the sum are then returned.

nt64 _mb4 xmahu(__int64 a, __int64 b, __ int64 c)

The 64-bit values a and b are treated as unsigned integers and multiplied to
produce a full 128-bit unsigned result. The 64-bit value C is zero-extended and
added to the product. The most significant 64 bits of the sum are then returned.

nt64 nb64 _popcnt(__int64 a)

The number of bits in the 64-bit integer a that have the value 1 are counted, and
the resulting sum is returned.

nt 64 _nmb4_shladd(__int64 a, const int count, __int64 b)
a is shifted to the left by count bits and then added to b. The result is returned.

i nt

287

Intel® C++ Compiler for Linux* Systems User's Guide

_int64 b4 _shrp(__int64 a, __int64 b

const

i nt count)

a and b are concatenated to form a 128-bit value and shifted to the right count
bits. The least significant 64 bits of the result are returned.

Lock and Atomic Operation Related Intrinsics

The prototypes for these intrinsics are in the i a64i nt ri n. h header file.

Intrinsic

Description

unsi gned __int64
_Interl ockedExchange8(vol atil e unsi gned

Map to the xchgl instruction.
Atomically write the least

_Interl ockedConpar eExchange8_rel (vol atile
unsi gned char *Desti nation, unsigned
__int64 Exchange, unsigned __int64

Conpar and)

char *Target, unsigned __int64 val ue) significant byte of its 2nd
argument to address specified
by its 1st argument.

unsi gned i nt 64 Compare and exchange

atomically the least significant
byte at the address specified by
its 1st argument. Maps to the
crmpxchgl. r el instruction
with appropriate setup.

unsi gned __int64
_Interl ockedConpar eExchange8 acq(vol atil e
unsi gned char *Desti nation, unsigned

i nt 64 Exchange, unsigned __int64

Same as above, but using
acqui r e semantic.

Conpar and)

unsigned __int64 . . Map to the xchg?2 instruction.
_Interl ockedExchangel6(vol atil e unsi gned Atomically write the least
short *Target, unsigned __int64 val ue)

significant word of its 2nd
argument to address specified
by its 1st argument.

unsi gned __int64

I nterl ockedConpar eExchangel6 rel (vol atile
unsi gned short *Destination, unsigned
__int64 Exchange, unsigned __int64

Compare and exchange
atomically the least significant
word at the address specified
by its 1st argument. Maps to

I nt erl ockedConpar eExchangel6 acq(vol atile
unsi gned short *Destination, unsigned
__int64 Exchange, unsigned __int64
Conpar and)

Conpar and
P) the cnmpxchg2. rel
instruction with appropriate
setup.
unsi gned i nt 64 Same as above, but using

acqui r e semantic.

int _Interlockedlncrenent(volatile int
*addend

Atomically increment by one
the value specified by its
argument. Maps to the

f et chadd4 instruction.

288

Intel® C++ Intrinsics Reference

Intrinsic

Description

int _InterlockedDecrenent(volatile int
*addend

Atomically decrement by one
the value specified by its
argument. Maps to the

f et chadd4 instruction.

int _InterlockedExchange(volatile int
*Target, |ong val ue

Do an exchange operation
atomically. Maps to the
xchg4 instruction.

int _InterlockedConpareExchange(vol atile
int *Destination, int Exchange, int
Conpar and

Do a compare and exchange
operation atomically. Maps to
the cnpxchg4 instruction
with appropriate setup.

int _InterlockedExchangeAdd(vol atile int
*addend, int increment

Use compare and exchange to
do an atomic add of the
increment value to the addend.
Maps to a loop with the
cnpxchg4 instruction to
guarantee atomicity.

int _InterlockedAdd(volatile int *addend,

int increnent)

Same as above; but returns
new value, not the original
one.

void *

_Interl ockedConpar eExchangePoi nter (voi d *
vol atil e *Destination, void *Exchange
voi d *Conpar and)

Map the exch8 instruction;
Atomically compare and
exchange the pointer value
specified by its first argument
(all arguments are pointers)

unsi gned __int64
_Interl ockedExchangeU(vol ati |l e unsi gned
int *Target, unsigned __int64 val ue)

Atomically exchange the 32-
bit quantity specified by the 1st
argument. Maps to the xchg4
instruction.

unsi gned __int64

_Interl ockedConpar eExchange_rel (vol atile
unsi gned int *Destination, unsigned
__int64 Exchange, unsigned __int64

Maps to the cnpxchg4. re
instruction with appropriate
setup. Atomically compare and
exchange the value specified

Compar and
P) by the first argument (a 64-bit
pointer).
unsi gned i nt64 Same as above; but map the

_Interl ockedConpar eExchange_acq(vol atil e
unsi gned int *Destination, unsigned
__int64 Exchange, unsigned __int64
Conpar and)

cnpxchg4. acq instruction.

voi d _Rel easeSpi nLock(volatile int *x)

Release spin lock.

289

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Description

__int64 _Interlockedl ncrement64(volatile Increment by one the value

__int64 *addend) specified by its argument.
Maps to the f et chadd
instruction.

__int64 _InterlockedDecrenent64(volatile Decrement by one the value

__int64 *addend) specified by its argument.

Maps to the f et chadd
instruction.

__int64 _Interl ockedExchange64(vol atile Do an exchange operation
__int64 *Target, __int64 value) atomically. Maps to the xchg
instruction.

unsigned __int64 Same as
_Interl ockedExchangeU64(vol atile unsigned ||nterl ockedExchange64
__int64 *Target, unsigned __int64 val ue) (for unsigned quantities).
unsigned __int64 . Maps to the cnmpxchg. re

I nt erl ockedConpar eExchange64 rel (vol atile instruction with appropriate
unsi gned __int64 *Destination, unsigned :
__int64 Exchange, unsigned __int64 sdﬁf.AnTEmaﬁycomm%and
Oorrpar and) €xcnange the value speciiie

by the first argument (a 64-bit
pointer).

unsigned __int64

I nt erl ockedConpar eExchange64 acq(vol atile
unsi gned __int64 *Destination, unsigned
__int64 Exchange, unsigned __int64
Conpar and)

Maps to the cnpxchg. acq
instruction with appropriate
setup. Atomically compare and
exchange the value specified
by the first argument (a 64-bit
pointer).

_in
_Interl ockedConmpar eExchange64(vol atil e
i nt 64 *Destination, __int64 Exchange,
i nt 64 Conpar and)

Same as above for signed
quantities.

nt64 | nterl ockedExchangeAdd64(vol atile
nt 64 *addend, __int64 increnent)

Use compare and exchange to
do an atomic add of the
increment value to the addend.
Maps to a loop with the
cnpxchg instruction to
guarantee atomicity

i nt 64
*addend,

Interl ockedAdd64(vol atile
__int64 increnent);

i nt 64

Same as above. Returns the
new value, not the original
value. See Note below.

290

Intel® C++ Intrinsics Reference

ff—t_)Note

_Interl ockedSub64 is provided as a macro definition based on _I nt er | ockedAdd64.

#define _Interl ockedSub64(target, incr)
_Interl ockedAdd64((target), (-(incr))).

Uses cnpxchg to do an atomic sub of the i ncr value to the t ar get . Maps to a loop with the
cnpxchg instruction to guarantee atomicity.

Load and Store

You can use the load and store intrinsic to force the strict memory access ordering of specific data
objects. This intended use is for the case when the user suppresses the strict memory access
ordering by using the - seri al i ze-vol ati | e- option.

Intrinsic Prototype Description
_stl rel |void __stl rel(void *dst, const Generates an st 1. r el
char val ue); instruction.
_st2 rel |void __st2 rel(void *dst, const Generates an st 2. r el
short val ue); instruction.
_st4_rel |void __st4 rel(void *dst, const Generates an st 4. r el
int value); instruction.
_st8_rel |void __st8 rel(void *dst, const Generates an St 8. r el
__int64 value); instruction.
__1dl acq|unsigned char _ 1dl _acq(void Generates an | d1. acq
*src); instruction.
__1d2_acq|unsigned short _ 1d2 acq(void Generates an | d2. acq
*src); instruction.
__ld4_acq|unsigned int __1d4_acq(void *src); |Generatesanl d4. acq
instruction.
_1d8_acq|unsigned __int64 _ 1d8 acq(void Generates an | d8. acq
*src); instruction.

291

Intel® C++ Compiler for Linux* Systems User's Guide

Operating System Related Intrinsics

The prototypes for these intrinsics are in the i a64i nt ri n. h header file.

Intrinsic

Description

unsi gned __int64
__getReg(const int
whi chReg)

Gets the value from a hardware register based on
the index passed in. Produces a corresponding nov
= r instruction. Provides access to the following
registers:

See Register Names for getReg() and setReg().

void _ setReg(const int
whi chReg, unsigned __int64
val ue)

Sets the value for a hardware register based on the
index passed in. Produces a corresponding nov =
I instruction.

See Register Names for getReg() and setReg().

unsi gned __int64
__getlndReg(const int
whi chl ndReg, __int64 index)

Return the value of an indexed register. The index
is the 2nd argument; the register file is the first
argument.

void __ setlndReg(const int
whi chl ndReg, __int64 index,
unsi gned __int64 val ue)

Copy a value in an indexed register. The index is
the 2nd argument; the register file is the first
argument.

void *_ ptr64 _rdteb(void)

Gets TEB address. The TEB address is kept inr 13
and maps to the move r =t p instruction

void __isrlz(void)

Executes the serialize instruction. Maps to the
srlz.i instruction.

void _ dsrlz(void)

Serializes the data. Maps to the srl z. d
instruction.

unsigned __int64
__fetchadd4_acq(unsi gned
i nt *addend, const int

i ncrenent)

Map the f et chadd4. acq instruction.

unsi gned __int64
__fetchadd4_rel (unsi gned
i nt *addend, const int

i ncrenent)

Map the f et chadd4. r el instruction.

unsi gned __int64
__fetchadd8 acq(unsi gned
__int64 *addend, const int
i ncrenent)

Map the f et chadd8. acq instruction.

unsi gned __int64
__fetchadd8 rel (unsi gned
__int64 *addend, const int
i ncrenent)

Map the f et chadd8. r el instruction.

292

Intel® C++ Intrinsics Reference

Intrinsic

Description

void _ fwb(void)

Flushes the write buffers. Maps to the f wb
instruction.

void _ Idfs(const int
whi chFl oat Reg, void *src)

Map the | df s instruction. Load a single precision
value to the specified register.

void __ldfd(const int
whi chFl oat Reg, void *src)

Map the | df d instruction. Load a double precision
value to the specified register.

void __ldfe(const int
whi chFl oat Reg, void *src)

Map the | df e instruction. Load an extended
precision value to the specified register.

void _ | df8(const int
whi chFl oat Reg, void *src)

Map the | df 8 instruction.

void _Idf _fill(const int
whi chFl oat Reg, void *src)

Map the | df . fi || instruction.

void _ stfs(void *dst,
const i nt whichFl oat Reg)

Map the sf t s instruction.

void _ stfd(void *dst,
const i nt whichFl oat Reg)

Map the st f d instruction.

void _ stfe(void *dst,
const int whichFl oat Reg)

Map the st f e instruction.

void _ stf8(void *dst,
const int whichFl oat Reg)

Map the st f 8 instruction.

void _ stf_spill(void *dst,
const i nt whichFl oat Reg)

Map the st f. spi | | instruction.

void __nf(void)

Executes a memory fence instruction. Maps to the
nf instruction.

void __ nfa(void)

Executes a memory fence, acceptance form
instruction. Maps to the nf . a instruction.

void __synci (void)

Enables memory synchronization. Maps to the
sync. i instruction.

void __thash(__int64)

Generates a translation hash entry address. Maps to
thet hash r = r instruction.

void _ttag(__int64)

Generates a translation hash entry tag. Maps to the
ttag r=r instruction.

void __itcd(__int64 pa)

Insert an entry into the data translation cache (Map
i tc. d instruction).

293

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic

Description

void __itci(__int64 pa)

Insert an entry into the instruction translation cache
Mapitc.i).

void __itrd(__int64
whi chTransReg, __int64 pa)

Map the i t r. d instruction.

void __itri(__int64
whi chTransReg, __int64 pa)

Map the i tr. i instruction.

void _ ptce(__int64 va)

Map the pt c. e instruction.

void _ptcl(__int64 va,
__int64 pagesz)

Purges the local translation cache. Maps to the
ptc.l r, r instruction.

void _ ptcg(__int64 va,
__int64 pagesz)

Purges the global translation cache. Maps to the
ptc.g r, r instruction.

void _ ptcga(__int64 va
__int64 pagesz)

Purges the global translation cache and ALAT.
Maps to the pt c. ga r, r instruction.

void ptri(__int64 va
__int64 pagesz)

Purges the translation register. Maps to the pt r . i
r, r instruction.

void ptrd(__int64 va
__int64 pagesz)

Purges the translation register. Maps to the pt r . d
r, r instruction.

_int64 _tpa(__int64 va)

Map the t pa instruction.

whi chGener al Req)

void __inval at(void) Invalidates ALAT. Maps to the i nval a
instruction.

void __invala (void) Same asvoi d __i nval at (voi d)

void __invala_gr(const int whi chGener al Reg = 0-127

void __invala fr(const int
whi chFl oat Req)

whi chFl oat Reg =0-127

void _ break(const int)

Generates a break instruction with an immediate.

void _ _nop(const int)

Generate a NOP instruction.

void __ debugbreak(voi d)

Generates a Debug Break Instruction fault.

void _fc(__int64)

Flushes a cache line associated with the address
given by the argument. Maps to the f ¢ instruction.

294

Intel® C++ Intrinsics Reference

Intrinsic Description
void __sun(int mask) Sets the user mask bits of PSR. Maps to the sum
i M4 instruction.
void __run(int mask) Resets the user mask.
i nt 64 Get the caller's address.

_Ret ur nAddr ess(voi d)

void __Ifetch(int Ifhint, Generate the | f et ch. | f hi nt instruction. The
void *y) value of the first argument specifies the hint type.
void __Ifetch_fault(int Generate the | fet ch. faul t. | fhint
I fhint, void *y) instruction. The value of the first argument
specifies the hint type.
oi d Generate the | f et ch. excl . | f hi nt
I_lhf et ch_excl (I nt instruction. The value {0|1|2|3} of the first
In

void *y) argument specifies the hint type.
voi d | Generate the | fet ch. faul t. excl.|fhint
__Ifetch _fault_excl (i |instruction. The value of the first argument
nt I fhint, void *y)

specifies the hint type.

unsi gned int
__cacheSi ze(unsi gned i nt
cachelLevel)

__cacheSi ze(n) returns the size in bytes of the
cache at level n. 1 represents the first-level cache. 0
is returned for a non-existent cache level. For
example, an application may query the cache size
and use it to select block sizes in algorithms that
operate on matrices.

void _ _menory_barrier(void)

Creates a barrier across which the compiler will not
schedule any data access instruction. The compiler
may allocate local data in registers across a
memory barrier, but not global data.

void __ssm(int mask)

Sets the system mask. Maps to the ssm i 4
instruction.

void __rsn(int

mask)

Resets the system mask bits of PSR. Maps to the
rsm i nm4 instruction.

295

Intel® C++ Compiler for Linux* Systems User's Guide

Conversion Intrinsics

The prototypes for these intrinsics are in the i a64i nt ri n. h header file.

Intrinsic Description

_int64 _mto_int64(__n64 a) Convert a of type B4 to type

__i nt 64. Translates to nop since both
types reside in the same register on Itanium-
based systems.

_nme4 mfromint64(__int64 a) Convert a of type __i nt 64 to type
___nB4. Translates to nop since both types
reside in the same register on Itanium-based

systems.
__int64] Convert its double precision argument to a
__round_doubl e_t o_i nt 64(doubl e signed integer.
d)
unsi gned __int64 Map the get f . exp instruction and return
__getf_exp(doubl e d) the 16-bit exponent and the sign of its
operand.

Register Names for getReg() and setReg()
The prototypes for getReg() and setReg() intrinsics are in the i a64r egs. h header file.

Name whichReg

_IAB4_REG I P 1016

_|I AB4_REG_PSR 1019

_I A64_REG PSR L | 1019

General Integer Registers

Name whichReg

_I AB4_REG GP| 1025

_I AB4_REG _SP| 1036

_I A64_REG TP | 1037

296

Intel® C++ Intrinsics Reference

Application Registers

Name whichReg
_1 A64_REG AR KRO 3072
_1 A64_REG AR KR1 3073
_1 A64_REG AR KR2 3074
_1 A64_REG AR KR3 3075
_1 A64_REG AR KR4 3076
_1 A64_REG AR KR5 3077
_1 A64_REG AR KR6 3078
_1 A64_REG AR KR7 3079
_1 A64_REG AR RSC 3088
_I A64_REG AR BSP 3089
_1 A64_REG AR BSPSTORE | 3090
_1 A64_REG AR RNAT 3091
_1 A64_REG AR FCR 3093
_I A64_REG AR _EFLAG 3096
_I A64_REG AR CSD 3097
_1 A64_REG AR SSD 3098
_1 A64_REG AR _CFLAG 3099
_1 A64_REG AR FSR 3100
_1 A64_REG AR FIR 3101
_1 A64_REG AR FDR 3102
_1 A64_REG AR _CCV 3104
_I A64_REG AR _UNAT 3108
_1 A64_REG AR FPSR 3112

297

Intel® C++ Compiler for Linux* Systems User's Guide

Name whichReg
_1 A64_REG AR I TC 3116
_1 A64_REG AR PFS 3136
_1A64_REG AR LC 3137
_1 A64_REG AR EC 3138

Control Registers

Name whichReg

_I AB4_REG CR _DCR |4096

_1 A64_REG CR_I TM | 4097

_I AB4_REG CR_I VA |4098

_1 AB4_REG CR_PTA | 4104

_1 A64_REG CR_| PSR| 4112

_1A64_REG CR I SR 4113

1 AB4_REG CRIIP |4115

1 AB4_REG CR_IFA |4116

_1 A64_REG CR_I TIR|4117

_I AB4_REG CR || PA| 4118

1 AB4_REG CRIFS |4119

_1A64_REG CR 1M [4120

_IA64_REG CR I HA (4121

_IAB4_REG CR LI D |4160

_IAB4_REG CR_I VR |4161 *

_I A64_REG CR TPR [4162

1 AB4_REG CR EO | 4163

298

Intel® C++ Intrinsics Reference

Name

whichReg

_1 A64_REG CR_I RRO

4164 *

_1 A64_REG CR_| RR1

4165 *

_1 A64_REG CR_| RR2

4166 *

_1 A64_REG CR_| RR3

4167 *

_1 A64_REG CR_I TV

4168

_1 A64_REG CR_PW

4169

_1 A64_REG CR_CMCV

4170

_1 A64_REG CR_LRRO

4176

_1 A64_REG CR_LRR1

4177

* get Reg only

Indirect Registers for getindReg() and setindReg()

Name

whichReg

_I A64_REG | NDR_CPU D 9000 *

_1A64_REG | NDR_DBR 9001
_1A64_REG | NDR | BR 9002
_1A64_REG | NDR_PKR 9003
_1A64_REG | NDR_PMC 9004
_1A64_REG | NDR_PMD 9005
_1A64_REG | NDR_RR 9006

_1 A64_REG_| NDR_RESERVED | 9007

* get | ndReg only

299

Intel® C++ Compiler for Linux* Systems User's Guide

Multimedia Additions

The prototypes for these intrinsics are in the i a64i nt ri n. h header file.

Intrinsic Corresponding Instruction

_int64 _nm64_czx1ll (__nbB4 a) czx1. | (Compute Zero Index)

_int64 _nm64_czxlr(__nbB4 a) czx1l.r (Compute Zero Index)

__int64 b4 _czx2l (__nb4 a) czx2.| (Compute Zero Index)

__int64 b4 _czx2r(__nb4 a) czx2. r (Compute Zero Index)

__nb4 _nb4_nixll (__nb4 a, __nmb4 b) m x1. 1 (Mix)

__nb4 _nb4_nmixlr(__nb4 a, __nmb4 b) m x1.r (Mix)

__nmb4 _nb4_mix2l (__nmb4 a, __nb4 b) m x2. | (Mix)

__nb4 _nb4_nmix2r(__nb4 a, __nmb4 b) m x2. r (Mix)

__nB4 _nb4_nix4l (__nb4 a, __nmb4 b) m x4. | (Mix)

_ nm64 b4 _mixdr(__nmb4 a, __nbd b) m x4. r (Mix)

__nm64 _nmb4_nmuxl(__nb64 a, const int n) mux1 (Mux)

__nm64 _nmb4_mux2(__n64 a, const int n) nmux2 (Mux)

__nmb4 _nb4_paddluus(__nb64 a, __nmb4 b) paddl. uus (Parallel add)

__nmb4 _nb4_padd2uus(__nb64 a, __ b4 h) padd2. uus (Parallel add)

__n64 _n64_pavgl_nraz(__n64 a, __n64 b) |pavgl (Parallel average)

__n64 _n64_pavg2_nraz(__n64 a, __n64 b) |pavg2 (Parallel average)

__ b4 _nb4_pavgsubl(__nmb64 a, __ 64 h) pavgsubl (Parallel average
subtract)

__ b4 _nb4_pavgsub2(__nmb64 a, __ b4 h) pavgsub2 (Parallel average
subtract)

__nb4 _n64_pnpy2r(__n64 a, __n64 b) pnpy2. r (Parallel multiply)

__nb4 _nb4_pnpy2l (__nbB4 a, __nb4 b) pnpy2. | (Parallel multiply)

__nmb4 _nb4_pnpyshr2(__nb4 a, __nb4 b, pnpyshr 2 (Parallel multiply and

const int count) shift right)

300

Intel® C++ Intrinsics Reference

Intrinsic Corresponding Instruction

__nm64 _n64_pnpyshr2u(__n64 a, _ n64 b, pnpyshr 2. u (Parallel multiply
const int count) and shift right)

__n64 _n64_pshl add2(__nb64 a, const int |pshladd2 (Parallel shift left
count, _ b4 b) and add)

__nb4 _nb64_pshradd2(__nb4 a, const int |pshradd2 (Parallel shift right
count, _ nb4 b) and add)

__nmb64 _nb4_psubluus(__nb64 a, __nb4 b) psubl. uus (Parallel subtract)

__nm64 _nb4_psub2uus(__nb4 a, __nb4 b) psub2. uus (Parallel subtract)

_int64 _nm64_czx1ll (__nb4 a)

The 64-bit value a is scanned for a zero element from the most significant
element to the least significant element, and the index of the first zero element is
returned. The element width is 8 bits, so the range of the result is from 0 - 7. If
no zero element is found, the default result is 8.

_int64 _nm64_czxlr(__nbB4 a)

The 64-bit value a is scanned for a zero element from the least significant
element to the most significant element, and the index of the first zero element is
returned. The element width is 8 bits, so the range of the result is from 0 - 7. If
no zero element is found, the default result is 8.

__int64 b4 _czx2l (__nb4 a)

The 64-bit value a is scanned for a zero element from the most significant
element to the least significant element, and the index of the first zero element is
returned. The element width is 16 bits, so the range of the result is from 0 - 3. If
no zero element is found, the default result is 4.

__int64 b4 _czx2r(__nb4 a)

The 64-bit value a is scanned for a zero element from the least significant
element to the most significant element, and the index of the first zero element is
returned. The element width is 16 bits, so the range of the result is from 0 - 3. If
no zero element is found, the default result is 4.

n64 B4 _mix1l (__nmB4 a, __nB4 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the left, as
shown in Figure 1, and return the result.

EEEE EERE

I 1 e Fig 1

301

Intel® C++ Compiler for Linux* Systems User's Guide

_ nB4 nbd4d _mxlr(__nb4 a, _ _nbB4 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the right, as
shown in Figure 2, and return the result.

TECNCTTE

EE N fg2

m64 _nb4_nmix2l (__nmB4 a, __nmb4 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the left, as
shown in Figure 3, and return the result.

n64 nb4 _mx2r(__nm64 a, _ _nb4 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the right, as
shown in Figure 4, and return the result.

__Flg .

n64 b4 _mi x4l (__nmB4 a, __nB4 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the left, as
shown in Figure 5, and return the result.

e | Fdiai

- Fig 5

n64 nb4 _mxdr(__nm64 a, _ _nb4 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the right, as
shown in Figure 6, and return the result.

N

Fig 6

302

Intel® C++ Intrinsics Reference

__ nBb4 b4 _nmux1l(__nbB4 a,

Based on the value of n, a permutation is performed on a as shown in Figure 7,
and the result is returned. Table 1 shows the possible values of n.

Table 1. Values of n for m64_mux1 Operation

n
@rcst |0
@n x 8
@huf |9
@l t OxA
@ ev 0xB

303

Intel® C++ Compiler for Linux* Systems User's Guide

__nmb4 nb4 _nmux2(__nbB4 a, const int n)

__nB4

n64

n64

304

Based on the value of n, a permutation is performed on a as shown in Figure 8,
and the result is returned.

. ; T) —
- : . -

. AN N
T e e
/.- e .-// \\\ ____.--"':,; \"""--.____
mu? i =2, OB (shufle 10 00 11 01) mux2 1l =12, 0x1b {reverse Q001 10 71)

GH fq:

mux? 11 = 12, Oxed (ahemate 11 01 10 00} muxe 1 =r2, l.:maa (broadeast 10 10 10 10)
Fig 8
_m64_pavgsubl(__nmb64 a, _ _nb4 b)

The unsigned data elements (bytes) of b are subtracted from the unsigned data
elements (bytes) of a and the results of the subtraction are then each
independently shifted to the right by one position. The high-order bits of each
element are filled with the borrow bits of the subtraction.

_m64_pavgsub2(__nmb4 a, _ _nb4 b)

The unsigned data elements (double bytes) of b are subtracted from the
unsigned data elements (double bytes) of a and the results of the subtraction are
then each independently shifted to the right by one position. The high-order bits
of each element are filled with the borrow bits of the subtraction.

_m64_pmpy2l (__nm64 a, _ _nbB4 b)

Two signed 16-bit data elements of a, starting with the most significant data
element, are multiplied by the corresponding two signed 16-bit data elements of
b, and the two 32-bit results are returned as shown in Figure 9.

Intel® C++ Intrinsics Reference

__nb4 nb4_prmpy2r(__nmb4 a, __nb4 b)

Two signed 16-bit data elements of a, starting with the least significant data
element, are multiplied by the corresponding two signed 16-bit data elements of
b, and the two 32-bit results are returned as shown in Figure 10.

..JLW&“'fﬁ
Fig 10
n64 _nb4_pnpyshr2(__nb4 a, _ nmb4 b, const int count)

The four signed 16-bit data elements of a are multiplied by the corresponding
signed 16-bit data elements of b, yielding four 32-bit products. Each product is
then shifted to the right count bits and the least significant 16 bits of each shifted
product form 4 16-bit results, which are returned as one 64-bit word.

n64 nb4_pnpyshr2u(__n64 a, _ mb64 b, const int count)

The four unsigned 16-bit data elements of a are multiplied by the corresponding
unsigned 16-bit data elements of b, yielding four 32-bit products. Each product
is then shifted to the right count bits and the least significant 16 bits of each
shifted product form 4 16-bit results, which are returned as one 64-bit word.

n64 _nb4_pshl add2(__n64 a, const int count, _ nb4 b)

a is shifted to the left by count bits and then is added to b. The upper 32 bits of
the result are forced to 0, and then bits [31:30] of b are copied to bits [62:61] of
the result. The result is returned.

__nb4 nb4_pshradd2(__nm64 a, const int count, _ nmb64 b)

The four signed 16-bit data elements of a are each independently shifted to the
right by count bits (the high order bits of each element are filled with the
initial value of the sign bits of the data elements in a); they are then added to the
four signed 16-bit data elements of b. The result is returned.

n64 nb4 paddluus(__n64 a, _ nb4 b)

a is added to b as eight separate byte-wide elements. The elements of a are
treated as unsigned, while the elements of b are treated as signed. The results are
treated as unsigned and are returned as one 64-bit word.

__nb4 nb4_padd2uus(__nm64 a, _ nb4 b)

a is added to b as four separate 16-bit wide elements. The elements of a are
treated as unsigned, while the elements of b are treated as signed. The results are
treated as unsigned and are returned as one 64-bit word.

n64 nb4 _psubluus(__nm64 a, _ nb4 b)

a is subtracted from b as eight separate byte-wide elements. The elements of a
are treated as unsigned, while the elements of b are treated as signed. The results
are treated as unsigned and are returned as one 64-bit word.

305

Intel® C++ Compiler for Linux* Systems User's Guide

__nb4 nb4_psub2uus(__nmb4 a, _ nb4 b)

a is subtracted from b as four separate 16-bit wide elements. The elements of a
are treated as unsigned, while the elements of b are treated as signed. The results
are treated as unsigned and are returned as one 64-bit word.

n64 _nb4_pavgl nraz(__nm64 a, _ nb4 b)

The unsigned byte-wide data elements of a are added to the unsigned byte-wide
data elements of b and the results of each add are then independently shifted to
the right by one position. The high-order bits of each element are filled with the
carry bits of the sums.

__nBb4 nb4_pavg2_nraz(__mnmb4 a, _ _nbB4 b)

The unsigned 16-bit wide data elements of a are added to the unsigned 16-bit
wide data elements of b and the results of each add are then independently
shifted to the right by one position. The high-order bits of each element are
filled with the carry bits of the sums.

Synchronization Primitives

The synchronization primitive intrinsics provide a variety of operations. Besides performing these
operations, each intrinsic has two key properties:

* the function performed is guaranteed to be atomic

e associated with each intrinsic are certain memory barrier properties that restrict the
movement of memory references to visible data across the intrinsic operation by either the
compiler or the processor

For the intrinsics listed below, <t ype> is either a 32-bit or 64-bit integer.
Atomic Fetch-and-op Operations

<type> _ sync_fetch_and_add(<type> *ptr, <type> val)
<type> __sync_fetch_and_and(<type> *ptr, <type> val)
<type> __sync_fetch_and_nand(<type> *ptr, <type> val)
<type> __sync_fetch_and_or(<type> *ptr, <type> val)

<type> __sync_fetch_and sub(<type> *ptr, <type> val)
<type> _ sync_fetch_and_xor(<type> *ptr, <type> val)

Atomic Op-and-fetch Operations

<type> _ sync_add_and_fetch(<type> *ptr, <type> val)
<type> __sync_sub_and fetch(<type> *ptr, <type> val)
<type> __sync_or_and_fetch(<type> *ptr, <type> val)

<type> __sync_and_and_fetch(<type> *ptr, <type> val)
<type> __sync_nand_and_fetch(<type> *ptr, <type> val)
<type> __sync_xor_and_fetch(<type> *ptr, <type> val)

Atomic Compare-and-swap Operations

<type> __sync_val conpare_and_swap(<type> *ptr, <type> old val,
<type> new val)

int _ sync_bool _conpare_and_swap(<type> *ptr, <type> old_val,
<type> new val)

Atomic Synchronize Operation

void __sync_synchroni ze (void);

Atomic Lock-test-and-set Operation

<type> _ sync_l ock_test_and_set(<type> *ptr, <type> val)
Atomic Lock-release Operation

void _ sync |l ock rel ease(<type> *ptr)

306

Intel® C++ Intrinsics Reference

Miscellaneous Intrinsics
voi d* _ get _return_address(unsigned int |evel);

This intrinsic yields the return address of the current function. The | evel
argument must be a constant value. A value of 0 yields the return address of the
current function. Any other value yields a zero return address. On Linux
systems, this intrinsic is synonymous with __bui I ti n_r et ur n_addr ess.
The name and the argument are provided for compatibility with gcc*.

void __set _return_address(voi d* addr);

This intrinsic overwrites the default return address of the current function with
the address indicated by its argument. On return from the current invocation,
program execution continues at the address provided.

voi d* _ get frame_address(unsigned int |evel);

This intrinsic returns the frame address of the current function. The | evel
argument must be a constant value. A value of 0 yields the frame address of the
current function. Any other value yields a zero return value. On Linux systems,
this intrinsic is synonymous with __bui | ti n_frane_addr ess. The name
and the argument are provided for compatibility with gcc.

Data Alignment, Memory Allocation Intrinsics, and
Inline Assembly

This section describes features that support usage of the intrinsics. The following topics are
described:

* Alignment Support
* Allocating and Freeing Aligned Memory Blocks

* Inline Assembly

Alignment Support

To improve intrinsics performance, you need to align data. For example, when you are using the
Streaming SIMD Extensions, you should align data to 16 bytes in memory operations to improve
performance. Specifically, you must align __ml28 objects as addresses passed to the _mm | oad
and _nmm st or e intrinsics. If you want to declare arrays of floats and treat them as __ ml28
objects by casting, you need to ensure that the float arrays are properly aligned.

Use __decl spec(align) to direct the compiler to align data more strictly than it otherwise
does on both [A-32 and Itanium®-based systems. For example, a data object of type int is
allocated at a byte address which is a multiple of 4 by default (the size of an int). However, by
using __decl spec(al i gn), you can direct the compiler to instead use an address which is a
multiple of 8, 16, or 32 with the following restrictions on IA-32:

e 32-byte addresses must be statically allocated
* 16-byte addresses can be locally or statically allocated

You can use this data alignment support as an advantage in optimizing cache line usage. By
clustering small objects that are commonly used together into a St r uct , and forcing the st r uct
to be allocated at the beginning of a cache line, you can effectively guarantee that each object is
loaded into the cache as soon as any one is accessed, resulting in a significant performance benefit.

307

Intel® C++ Compiler for Linux* Systems User's Guide

The syntax of this extended-attribute is as follows:
al i gn(n)

where n is an integral power of 2, less than or equal to 32. The value specified is the requested
alignment.

& Caution

In this release, __decl spec(al i gn(8)) does not function correctly. Use
__decl spec(align(16)) instead.

f) Note

If a value is specified that is less than the alignment of the affected data type, it has no effect. In
other words, data is aligned to the maximum of its own alignment or the alignment specified with
__decl spec(align).

You can request alignments for individual variables, whether of static or automatic storage
duration. (Global and static variables have static storage duration; local variables have automatic
storage duration by default.) You cannot adjust the alignment of a parameter, nor a field of a

st ruct orcl ass. You can, however, increase the alignment of a st r uct (or uni on or

cl ass), in which case every object of that type is affected.

As an example, suppose that a function uses local variables i and] as subscripts into a 2-
dimensional array. They might be declared as follows:

int i, j;

These variables are commonly used together. But they can fall in different cache lines, which
could be detrimental to performance. You can instead declare them as follows:

__decl spec(align(8)) struct { int i, j; } sub;

The compiler now ensures that they are allocated in the same cache line. In C++, you can omit the
st ruct variable name (written as sub in the above example). In C, however, it is required, and
you must write references toi andj assub.i andsub.j .

If you use many functions with such subscript pairs, it is more convenient to declare and use a
st ruct type for them, as in the following example:

typedef struct _ declspec(align(8)) { int i, j; } Sub

By placing the __decl spec(al i gn) after the keyword St r uct , you are requesting the
appropriate alignment for all objects of that type. However, that allocation of parameters is
unaffected by __decl spec(al i gn) . (If necessary, you can assign the value of a parameter to a
local variable with the appropriate alignment.)

You can also force alignment of global variables, such as arrays:

__decl spec(align(16)) float array[1000];
Allocating and Freeing Aligned Memory Blocks

Use the _nm_nal | oc and _nm f r ee intrinsics to allocate and free aligned blocks of memory.
These intrinsics are based on mal | oc and f r ee, which are in the | i bi r ¢. a library. You need
to include mal | oc. h. The syntax for these intrinsics is as follows:

void* mmmalloc (int size, int align)
void _mmfree (void *p)

The _mm_mal | oc routine takes an extra parameter, which is the alignment constraint. This
constraint must be a power of two. The pointer that is returned from _rmm mal | oc is guaranteed
to be aligned on the specified boundary.

308

Intel® C++ Intrinsics Reference

ff) Note

Memory that is allocated using _nmm mal | oc must be freed using_nm free . Callingfree
on memory allocated with _nm mal | oc or calling _rmm f r ee on memory allocated with
mal | oc will cause unpredictable behavior.

Inline Assembly

By default, the compiler inlines a number of standard C, C++, and math library functions. This
usually results in faster execution of your program.

Sometimes inline expansion of library functions can cause unexpected results. The inlined library
functions do not set the er r no variable. So, in code that relies upon the setting of the er r no
variable, you should use the - nol i b_i nl i ne option, which turns off inline expansion of library
functions. Also, if one of your functions has the same name as one of the compiler's supplied
library functions, the compiler assumes that it is one of the latter and replaces the call with the
inlined version. Consequently, if the program defines a function with the same name as one of the
known library routines, you must use the - nol i b_i nl i ne option to ensure that the program's
function is the one used.

=
£ 4 Note

Automatic inline expansion of library functions is not related to the inline expansion that the
compiler does during interprocedural optimizations. For example, the following command
compiles the program sum.c without expanding the library functions, but with inline expansion
from interprocedural optimizations (IPO):

prompt>icpc -ip -nolib_inline sumcpp
For details on IPO, see Interprocedural Optimizations.
MASM* Style Inline Assembly

The Intel® C++ Compiler supports MASM style inline assembly with the - use_nsasmoption.
See your MASM documentation for the proper syntax.

GNU*-like Style Inline Assembly (IA-32 only)
The Intel® C++ Compiler supports GNU-like style inline assembly. The syntax is as follows:

asm keyword [volatile-keyword] (asmtenplate [asminterface]

Syntax Element Description

asm keywor d asmstatements begin with the keyword asm Alternatively, either
__asmor __asm__ may be used for compatibility.

vol ati | e-keyword | If the optional keyword vol at i | e is given, the asmis volatile.
Two vol at i | e asmstatements will never be moved past each
other, and a reference to a vol at i | e variable will not be moved
relative to a volatile asm Alternate keywords __vol ati | e and
__vol atil e__ may be used for compatibility.

309

Intel® C++ Compiler for Linux* Systems User's Guide

Syntax Element

Description

asmtenpl ate

The asm t enpl at e is a C language ASCII string which specifies
how to output the assembly code for an instruction. Most of the
template is a fixed string; everything but the substitution-directives,
if any, is passed through to the assembler. The syntax for a
substitution directive is a %followed by one or two characters. The
supported substitution directives are specified in a subsequent
section.

asminterface

The asm i nt er f ace consists of three parts:

1. an optional out put - | i st

2. an optional i nput - | i st

3. an optional cl obber -1 i st

These are separated by colon (:) characters. If the out put - | i st
is missing, but an i nput - | i st is given, the input list may be
preceded by two colons (::)to take the place of the missing

out put-Ilist. Iftheasm i nt erface is omitted altogether,
the asmstatement is considered vol at i | e regardless of whether a
vol ati | e- keywor d was specified.

out put-1Iist

Anout put - | i st consists of one or more out put - specs
separated by commas. For the purposes of substitution in the asm
t enpl at e, each out put - spec is numbered. The first operand
in the out put - | i st is numbered 0, the second is 1, and so on.
Numbering is continuous through the out put - | i st and into the
i nput -1 i st. The total number of operands is limited to 10 (i.e.
0-9).

i nput-1ist

Similar to an out put - | i st,ani nput -1i st consists of one or
more i Nput - specs separated by commas. For the purposes of
substitution in the asn t enpl at e, each i nput - spec is
numbered, with the numbers continuing from those in the out put -
list.

cl obber-1i st

A cl obber-1i st tells the compiler that the asmuses or changes
a specific machine register that is either coded directly into the asm
or is changed implicitly by the assembly instruction. The

cl obber-1i st is a comma-separated list of cl obber - specs.

i nput - spec

The i nput - specs tell the compiler about expressions whose
values may be needed by the inserted assembly instruction. In order
to describe fully the input requirements of the asm you can list

i nput - specs that are not actually referenced in the asm

tenpl at e.

310

Intel® C++ Intrinsics Reference

Syntax Element

Description

cl obber - spec

Each cl obber - spec specifies the name of a single machine
register that is clobbered. The register name may optionally be
preceded by a % The following are the valid register names: eax,
ebx, ecx, edx, esi, edi, ebp, esp, ax, bx, cx, dx, si, di, bp, sp, al, bl, cl,
dl, ah, bh, ch, dh, st, st(1) - st(7), mmO - mm7, xmmO0 - xmm?7, and
cc. Itis also legal to specify "memory" in a cl obber - spec. This
prevents the compiler from keeping data cached in registers across
the asmstatement.

Intrinsics Cross-processor Implementation

This section provides a series of tables that compare intrinsics performance across architectures.
Before implementing intrinsics across architectures, please note the following.

* Instrinsics may generate code that does not run on all IA processors. Therefore the
programmer is responsible for using CPUI D to detect the processor and generating the

appropriate code.

* Implement intrinsics by processor family, not by specific processor. The guiding principle
for which family -- IA-32 or Itanium® processors -- the intrinsic is implemented on is
performance, not compatibility. Where there is added performance on both families, the
intrinsic will be identical.

Intrinsics For Implementation Across All 1A

The following intrinsics provide significant performance gain over a non-intrinsic-based code

equivalent.

i nt abs(int)

l ong | abs(1 ong)

unsigned long _ Irotl (unsigned |ong value, int shift)

unsigned long __Irotr(unsigned |ong value, int shift)

unsigned int _ rotl (unsigned int value, int shift)

unsigned int _ rotr(unsigned int value, int shift)

_int64 __i64_rotl(__int64 value, int shift)

_int64 __i64_rotr(__int64 value, int shift)

doubl e fabs(doubl e)

doubl e | og(doubl e)

float |ogf(float)

311

Intel® C++ Compiler for Linux* Systems User's Guide

doubl e | 0g10(doubl e)

float |o0gl0f(float)

doubl e exp(doubl e)

float expf(float)

doubl e pow(doubl e, doubl e)

fl oat powf(float, float)

doubl e si n(doubl e)

float sinf(float)

doubl e cos(doubl e)

float cosf(float)

doubl e tan(doubl e)

float tanf(float)

doubl e acos(doubl e)

fl oat acosf(fl oat)

doubl e acosh(doubl e)

fl oat acoshf (fl oat)

doubl e asi n(doubl e)

fl oat asinf(float)

doubl e asi nh(doubl e)

float asinhf(float)

doubl e at an(doubl e)

float atanf(float)

doubl e at anh(doubl e)

fl oat atanhf(fl oat)

fl oat cabs(double)*

312

Intel® C++ Intrinsics Reference

doubl e ceil (doubl e)

float ceilf(float)

doubl e cosh(doubl e)

fl oat coshf(fl oat)

fl oat fabsf(float)

doubl e fl oor (doubl e)

float floorf(float)

doubl e frod(doubl e)

float fnodf(float)

doubl e hypot (doubl e, doubl e)

fl oat hypotf (fl oat)

doubl e rint(double)

float rintf(float)

doubl e si nh(doubl e)

float sinhf(float)

float sqrtf(float)

doubl e t anh(doubl e)

float tanhf(float)

char *_strset(char *, _int32)

voi d *mencnp(const void *cs, const void *ct,

size_t n)

void *mencpy(void *s, const void *ct,

size_t n)

void *nmenset (void * s, int c, size_t n)

char *Strcat(char * s, const char * ct)

int *strcnmp(const char *, const char *)

char *strcpy(char * s, const char * ct)

313

Intel® C++ Compiler for Linux* Systems User's Guide

size_ t strlen(const char * cs)

int strncmp(char *, char *, int)

int strncpy(char *, char *, int)

void *__alloca(int)

int _setjnp(jnp_buf)

_exception_code(void)

_exception_info(void)

_abnormal _term nati on(voi d)

void _enabl e()

voi d _disabl e()

int _bswap(int)

int _in_byte(int)

int _in_dword(int)

int _in_word(int)

int _inp(int)

int _inpd(int)

int _inpwiint)

int out_byte(int, int)

int out _dword(int, int)

int _out_word(int, int)

int _outp(int, int)

int _outpd(int, int)

int outpw(int, int)

314

Intel® C++ Intrinsics Reference

MMX™ Technology Intrinsics Implementation

Key to the table entries

A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

C = Requires contorted implementation for particular microarchitecture. Will result in very poor

performance if used.

Intrinsic Name Alternate Name Across | MMX™ ltanium®
All' 1A | Technology | Architecture
Streaming
SIMD _
Extensions
Streaming
SIMD
Extensions 2
_menpty _mm enpty N/A A B
_mfrom.int _mmcvtsi32_si64 | N/A A A
~mto_int _mmcvtsi 64 _si32 |[N/A A A
_m packsswb _nmm packs_pi 16 N/A A A
_m packssdw _nmm packs_pi 32 N/A A A
_m packuswb _mm packs_pul6 N/A A A
_m punpckhbw _mm unpackhi _pi 8 |N/A A A
_m punpckhwd _mm unpackhi _pi 16 | N/A A A
_m punpckhdq _mm unpackhi _pi 32 | N/A A A
_m punpckl bw _mm unpackl o_pi 8 |N/A A A
_m punpckl wd _mm unpackl o_pi 16 | N/A A A
_m punpckl dq _mm unpackl o_pi 32 | N/A A A
_m paddb _nmm add_pi 8 N/A A A
_m paddw _nmm add_pi 16 N/A A A
_m paddd _nmm add_pi 32 N/A A A
_m paddsb _nmm adds_pi 8 N/A A A
_m paddsw _nmm adds_pi 16 N/A A A
_m paddusb _mm adds_pu8 N/A A A
_m paddusw _mm adds_pul6 N/A A A
_m psubb _mmsub _pi 8 N/A A A

315

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Name Alternate Name Across | MMX™ ltanium®
All lA | Technology | Architecture
Streaming
SIMD
Extensions
Streaming
SIMD
Extensions 2
_m psubw _nmm sub_pi 16 N/A A A
_m psubd _mm sub_pi 32 N/A A A
_m psubsb _nmm subs_pi 8 N/A A A
_m psubsw _nmm subs_pi 16 N/A A A
_m psubusb _mm subs_pu8 N/A A A
_m psubusw _mm subs_pul6 N/A A A
_m prmaddwd _mm rmadd_pi 16 N/A A C
—m pmul hw _mm nul hi _pi 16 N/A A A
—mpmul | w _mmnullo_pil6 N/A A A
_mopsllw _mmsll _pil6 N/A A A
_m psl | wi _mmslli_pil6 N/A A A
_mpsllid _mmsl1 _pi32 N/A A A
_m psl | di _mmslli_pi32 N/A A A
_mpsllq _mmsl | _si64 N/A A A
_mpsllqi _mmslli_si64 N/A A A
_m psraw _mm sra_pi 16 N/A A A
_m _psrawi _mmsrai _pil6 N/A A A
_m psrad _mm sra_pi 32 N/A A A
_m psr adi _mm srai _pi 32 N/A A A
_mpsrlw _mmsrl_pi 16 N/A A A
_mpsrlwi _mmsrli_pil6 N/A A A
_mpsrid _mmsrl_pi32 N/A A A
_m psrldi _mmsrli_pi32 N/A A A
_mpsrlq _mmsrl _si64 N/A A A
_m psrlqi _mmsrli_si64 N/A A A

316

Intel® C++ Intrinsics Reference

Intrinsic Name Alternate Name Across | MMX™ ltanium®
All lA | Technology | Architecture
Streaming
SIMD
Extensions
Streaming
SIMD
Extensions 2
_m pand _mm and_si 64 N/A A A
_m pandn _mm andnot _si 64 N/A A A
_m por _nmm or_si 64 N/A A A
_m pxor _nm xor _si 64 N/A A A
_m pcnpeqgb _nmm cnpeq_pi 8 N/A A A
_m _pcnpeqw _nm cnpeq_pi 16 N/A A A
_m pcnpeqd _mm cnpeqg_pi 32 N/A A A
_m pcnpgtb _nmm cnpgt _pi 8 N/A A A
_m pcnpgtw _nm cnpgt _pi 16 N/A A A
_m pcnpgtd _mm cnpgt _pi 32 N/A A A
nm set zero si 64 N/A A A
_mm set _pi 32 N/A A A
_mmset_pi 16 N/A A C
_mmset _pi8 N/A A C
_mmsetl pi32 N/A A A
_mmsetl pil6 N/A A A
_mmsetl pi8 N/A A A
_mmsetr_pi 32 N/A A A
_mmsetr_pi 16 N/A A C
_mmsetr_pi 8 N/A A C

_mm_enpty is implemented in Itanium instructions as a NOP for source compatibility only.

317

Intel® C++ Compiler for Linux* Systems User's Guide

Streaming SIMD Extensions Intrinsics Implementation

Regular Streaming SIMD Extensions intrinsics work on 4 32-bit single precision values. On

Itanium®-based systems basic operations like add or compare will require two SIMD instructions.

Both can be executed in the same cycle so the throughput is one basic Streaming SIMD
Extensions operation per cycle or 4 32-bit single precision operations per cycle.

Key to the table entries

* A= Expected to give significant performance gain over non-intrinsic-based code equivalent.

* B =Non-intrinsic-based source code would be better; the intrinsic's implementation may
map directly to native instructions but they offer no significant performance gain.

* C=Requires contorted implementation for particular microarchitecture. Will result in very
poor performance if used.

Intrinsic Alternate Across | MMX(TM Streaming | Itanium®
Name Name All'IA | Technology | SIMD Architecture
Extensions
Streaming
SIMD
Extensions
2
_mm add_ss N/A N/A B B
_mm add_ps N/A N/A A A
_mm sub_ss N/A N/A B B
_hm sub_ps N/A N/A A A
_mm mul _ss N/A N/A B B
_mm nul _ps N/A N/A A A
_mmdiv_ss N/A N/A B B
_mmdiv_ps N/A N/A A A
_mmsqrt_ss N/A N/A B B
_mm.sqrt_ps N/A N/A A A
_mmyrcp_ss N/A N/A B B
_mm.rcp_ps N/A N/A A A
_mmrsqgrt_ss N/A N/A B B
_mmrsqgrt_ps N/A N/A A A
_mm.m n_ss N/A N/A B B
_m_ni n_ps N/A N/A A A
_hm_nmax_ss N/A N/A B B
_mm max_ps N/A N/A A A

318

Intel® C++ Intrinsics Reference

Intrinsic Alternate Across | MMX(TM Streaming | Itanium®
Name Name All'IA | Technology | SIMD Architecture
Extensions
Streaming
SIMD
Extensions
2
_mm and_ps N/A N/A A A
_mm andnot _ps N/A N/A A A
_mm.or_ps N/A N/A A A
_hm xor _ps N/A N/A A A
_hm cnpeq_ss N/A N/A B B
_mm_cnpeq_ps N/A N/A A A
_mmecnplt_ss N/A N/A B B
_mmecenplt_ps N/A N/A A A
_mmcnpl e_ss N/A N/A B B
_mm cnpl e_ps N/A N/A A A
_mm_cnpgt _ss N/A N/A B B
_hm cnpgt _ps N/A N/A A A
_mm_cnpge_ss N/A N/A B B
_hm cnpge_ps N/A N/A A A
_mm _cnpneq_ss N/A N/A B B
_mm_cnpneq_ps N/A N/A A A
_mmcnpnlt_ss N/A N/A B B
_mmecnpnlt_ps N/A N/A A A
_mm cnpnl e_ss N/A N/A B B
_mm cnpnl e_ps N/A N/A A A
_m cnpngt _ss N/A N/A B B
_m cnpngt _ps N/A N/A A A
_mm _cnpnge_ss N/A N/A B B
_hm cnpnge_ps N/A N/A A A
_mm cnpord_ss N/A N/A B B
_mm cnpor d_ps N/A N/A A A

319

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Alternate Across | MMX(TM Streaming | Itanium®
Name Name All'IA | Technology | SIMD Architecture
Extensions
Streaming
SIMD
Extensions
2
_mm cnpunord_ss N/A N/A B B
_mm cnpunor d_ps N/A N/A A A
_mm comi eq_sSs N/A N/A B B
_mmcom I t_ss N/A N/A B B
_mmcomnil e_ss N/A N/A B B
_mm comi gt _ss N/A N/A B B
_mm comi ge_ss N/A N/A B B
_mm comi neq_ss N/A N/A B B
_mm_ucom eq_sSs N/A N/A B B
_mmucom | t_ss N/A N/A B B
_mm.ucom | e_ss N/A N/A B B
_mm.ucom gt _ss N/A N/A B B
_mm_ucom ge_ss N/A N/A B B
_mm_ucom neq_ss N/A N/A B B
_mm cvt _ss2si _mm cvtss_si 32 N/A N/A A B
_mm cvt _ps2pi _nm cvtps_pi 32 N/A N/A A A
_mmcvtt _ss2si _mmcvttss_si 32 N/A N/A A B
_mmcvtt_ps2pi _mm cvttps_pi32 N/A N/A A A
_mm cvt _si 2ss _mm cvtsi32_ss N/A N/A A B
_mm cvt_pi 2ps _nmm cvt pi 32_ps N/A N/A A C
_mm cvt pi 16_ps N/A N/A A C
_mm cvt pul6_ps N/A N/A A C
_mm cvtpi 8_ps N/A N/A A C
_mm cvt pu8_ps N/A N/A A C
_mm cvt pi 32x2_ps N/A N/A A C
_mmcvtps_pi 16 N/A N/A A C

320

Intel® C++ Intrinsics Reference

Intrinsic Alternate Across | MMX(TM Streaming | Itanium®
Name Name All'IA | Technology | SIMD Architecture
Extensions
Streaming
SIMD
Extensions
2
_mmcvtps_pi 8 N/A N/A A C
_hm nove_ss N/A N/A A A
_mmshuffle_ps N/A N/A A A
_mm unpackhi _ps N/A N/A A A
_mm unpackl o_ps N/A N/A A A
_mm nmovehl _ps N/A N/A A A
_mm novel h_ps N/A N/A A A
_mm nmovenask_ps N/A N/A A C
_mm get csr N/A N/A A A
_mm setcsr N/A N/A A A
_mm | oadh_pi N/A N/A A A
_mm | oadl _pi N/A N/A A A
_mm | oad_ss N/A N/A A B
_mm | oad_ps1 _mm | oadl _ps N/A N/A A A
_mm | oad_ps N/A N/A A A
_mm | oadu_ps N/A N/A A A
_mm | oadr _ps N/A N/A A A
_mm storeh_pi N/A N/A A A
_mm storel _pi N/A N/A A A
_mm store_ss N/A N/A A A
_mm store_ps N/A N/A A A
_mm store_psl _mm storel ps N/A N/A A A
_mm st oreu_ps N/A N/A A A
_mm storer_ps N/A N/A A A
_mm set _ss N/A N/A A A
_mm set_psl _mmsetl ps N/A N/A A A

321

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Alternate Across | MMX(TM Streaming | Itanium®
Name Name All'IA | Technology | SIMD Architecture
Extensions
Streaming
SIMD
Extensions
2
_mm set _ps N/A N/A A A
_mm setr_ps N/A N/A A A
_mm set zero_ps N/A N/A A A
_mm prefetch N/A N/A A A
_mm st ream pi N/A N/A A A
_mm stream ps N/A N/A A A
_mm sfence N/A N/A A A
_mpextrw _mmextract_pi 16 |N/A N/A A A
_mpinsrw _mminsert_pil6 N/A N/A A A
_m pmaxsw _mm max_pi 16 N/A N/A A A
_m prmaxub _mm _nmax_pu8 N/A N/A A A
_m pm nsw _mmmn_pi 16 N/A N/A A A
_m pm nub _mm. nin_pu8 N/A N/A A A
_m provirskb _mm novenmask_pi 8 | N/A N/A A C
—m pmul huw _mm nul hi _pul6 N/A N/A A A
_m pshufw _mmshuffle pil16 |N/A N/A A A
_m maskmovq _mm rmasknove_si 64 | N/A N/A A C
_m pavgb _nm avg_pu8 N/A N/A A A
_m pavgw _mm avg_pul6 N/A N/A A A
_m psadbw _nmm sad_pu8 N/A N/A A A

322

Intel® C++ Intrinsics Reference

Streaming SIMD Extensions 2 Intrinsics Implementation

Streaming SIMD Extensions 2 operate on 128-bit quantities with 64-bit double precision floating-
point values. The Intel® Itanium® processor does not support parallel double precision
computation, so Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

Key to the table entries:
* A= Expected to give significant performance gain over non-intrinsic-based code equivalent.

* B =Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

* C=Requires contorted implementation for particular microarchitecture. Will result in very
poor performance if used.

Intrinsic Across | MMX™ Streaming | Streaming | Itanium®
All IA | Technology | SIMD SIMD Architecture
Extenions | Extensions
2
_mm add_sd N/A N/A N/A A N/A
hm add_pd N/A N/A N/A A N/A
_mm sub_sd N/A N/A N/A A N/A
_nhm_sub_pd N/A N/A N/A A N/A
_mm nmul _sd N/A N/A N/A A N/A
_mm_mul _pd N/A N/A N/A A N/A
_mmsqrt_sd N/A N/A N/A A N/A
_mmsqrt_pd N/A N/A N/A A N/A
_mmdiv_sd N/A N/A N/A A N/A
_mmdiv_pd N/A N/A N/A A N/A
_mm.nmin_sd N/A N/A N/A A N/A
_nm_ni n_pd N/A N/A N/A A N/A
_mm_nax_sd N/A N/A N/A A N/A
_nhm_nax_pd N/A N/A N/A A N/A
_mm and_pd N/A N/A N/A A N/A
_mm_andnot _pd N/A N/A N/A A N/A

323

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Across | MMX™ Streaming | Streaming | Itanium®
All IA | Technology | SIMD SIMD Architecture
Extenions | Extensions
2
mm.or _pd N/A N/A N/A A N/A
_m xor _pd N/A N/A N/A A N/A
_mm cnpeq_sd N/A N/A N/A A N/A
_m cnpeq_pd N/A N/A N/A A N/A
_mmecnplt_sd N/A N/A N/A A N/A
_mm cnplt_pd N/A N/A N/A A N/A
_mmcnpl e_sd N/A N/A N/A A N/A
_mmcnple_pd N/A N/A N/A A N/A
_mm cnpgt _sd N/A N/A N/A A N/A
_hm cnpgt _pd N/A N/A N/A A N/A
_mm_cnpge_sd N/A N/A N/A A N/A
_hm cnpge_pd N/A N/A N/A A N/A
_mm cnpneg_sd N/A N/A N/A A N/A
_m cnpneq_pd N/A N/A N/A A N/A
_mmcnpnlt_sd N/A N/A N/A A N/A
_mm cnpnlt_pd N/A N/A N/A A N/A
_mm cnpnl e_sd N/A N/A N/A A N/A
_mm cnpnl e_pd N/A N/A N/A A N/A
_mm_cnpngt _sd N/A N/A N/A A N/A
_hm cnpngt _pd N/A N/A N/A A N/A
_mm _cnpnge_sd N/A N/A N/A A N/A
_hm cnpnge_pd N/A N/A N/A A N/A

324

Intel® C++ Intrinsics Reference

Intrinsic Across | MMX™ Streaming | Streaming | Itanium®
All IA | Technology | SIMD SIMD Architecture
Extenions | Extensions
2
_nm cnpord_pd N/A N/A N/A A N/A
_mm cnpord_sd N/A N/A N/A A N/A
_mm cnpunord_pd N/A N/A N/A A N/A
_mm cnpunor d_sd N/A N/A N/A A N/A
_mm comi eqg_sd N/A N/A N/A A N/A
_mm conilt_sd N/A N/A N/A A N/A
_mm comil e_sd N/A N/A N/A A N/A
_mm comi gt _sd N/A N/A N/A A N/A
_mm comi ge_sd N/A N/A N/A A N/A
_mm _comi neqg_sd N/A N/A N/A A N/A
_mm_ucom eq_sd N/A N/A N/A A N/A
_mm.ucomilt_sd N/A N/A N/A A N/A
_mm_uconil e_sd N/A N/A N/A A N/A
_mm.ucom gt _sd N/A N/A N/A A N/A
_mm_ucomi ge_sd N/A N/A N/A A N/A
_mm _ucom neq_sd N/A N/A N/A A N/A
_mm cvt epi 32_pd N/A N/A N/A A N/A
_mm cvt pd_epi 32 N/A N/A N/A A N/A
_mm cvttpd_epi 32 N/A N/A N/A A N/A
_mm cvtepi 32_ps N/A N/A N/A A N/A
_mm cvt ps_epi 32 N/A N/A N/A A N/A
_mm cvttps_epi 32 N/A N/A N/A A N/A

325

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Across | MMX™ Streaming | Streaming | Itanium®
All IA | Technology | SIMD SIMD Architecture
Extenions | Extensions
2
_mm cvt pd_ps N/A N/A N/A A N/A
_mm cvt ps_pd N/A N/A N/A A N/A
_mm cvtsd_ss N/A N/A N/A A N/A
_mm cvtss_sd N/A N/A N/A A N/A
_mm cvtsd_si 32 N/A N/A N/A A N/A
_mmcvttsd_si32 N/A N/A N/A A N/A
_mm cvt si 32_sd N/A N/A N/A A N/A
_mm cvt pd_pi 32 N/A N/A N/A A N/A
_nm cvtt pd_pi 32 N/A N/A N/A A N/A
_mm cvt pi 32_pd N/A N/A N/A A N/A
_mm unpackhi _pd N/A N/A N/A A N/A
_mm unpackl o_pd N/A N/A N/A A N/A
_mm unpackl o_pd N/A N/A N/A A N/A
~_mmshuffle_pd N/A N/A N/A A N/A
_mm | oad_pd N/A N/A N/A A N/A
_mm | oadl_pd N/A N/A N/A A N/A
_mm | oadr _pd N/A N/A N/A A N/A
_mm | oadu_pd N/A N/A N/A A N/A
_mm | oad_sd N/A N/A N/A A N/A
_mm | oadh_pd N/A N/A N/A A N/A
_mm | oadl _pd N/A N/A N/A A N/A
_mm set_sd N/A N/A N/A A N/A

326

Intel® C++ Intrinsics Reference

Intrinsic Across | MMX™ Streaming | Streaming | Itanium®
All IA | Technology | SIMD SIMD Architecture
Extenions | Extensions
2
_mmsetl pd N/A N/A N/A A N/A
_mm set_pd N/A N/A N/A A N/A
_mmsetr_pd N/A N/A N/A A N/A
_mm set zero_pd N/A N/A N/A A N/A
_mm nove_sd N/A N/A N/A A N/A
_mm store_sd N/A N/A N/A A N/A
_mm storel pd N/A N/A N/A A N/A
_mmstore_pd N/A N/A N/A A N/A
_mm storeu_pd N/A N/A N/A A N/A
_mm storer_pd N/A N/A N/A A N/A
_mm storeh_pd N/A N/A N/A A N/A
_mm storel pd N/A N/A N/A A N/A
_mm add_epi 8 N/A N/A N/A A N/A
_mm add_epi 16 N/A N/A N/A A N/A
_mm add_epi 32 N/A N/A N/A A N/A
_mm add_si 64 N/A N/A N/A A N/A
_mm add_epi 64 N/A N/A N/A A N/A
_mm adds_epi 8 N/A N/A N/A A N/A
_nm adds_epi 16 N/A N/A N/A A N/A
_mm adds_epu8 N/A N/A N/A A N/A
_mm adds_epul6 N/A N/A N/A A N/A
_mm avg_epu8 N/A N/A N/A A N/A

327

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Across | MMX™ Streaming | Streaming | Itanium®
All IA | Technology | SIMD SIMD Architecture
Extenions | Extensions
2
_mm avg_epul6 N/A N/A N/A A N/A
_nm nadd_epi 16 N/A N/A N/A A N/A
_mm _nax_epi 16 N/A N/A N/A A N/A
_mm _max_epu8 N/A N/A N/A A N/A
_mmmn_epi 16 N/A N/A N/A A N/A
_mm.m n_epu8 N/A N/A N/A A N/A
_mm mul hi _epi 16 N/A N/A N/A A N/A
_mm mul hi _epul6 N/A N/A N/A A N/A
_mm nul | o_epi 16 N/A N/A N/A A N/A
_mm nmul _su32 N/A N/A N/A A N/A
_mm mul _epu32 N/A N/A N/A A N/A
_mm sad_epu8 N/A N/A N/A A N/A
_mm sub_epi 8 N/A N/A N/A A N/A
_mm sub_epi 16 N/A N/A N/A A N/A
_mm sub_epi 32 N/A N/A N/A A N/A
_mm sub_si 64 N/A N/A N/A A N/A
_mm sub_epi 64 N/A N/A N/A A N/A
_mm subs_epi 8 N/A N/A N/A A N/A
_nm subs_epi 16 N/A N/A N/A A N/A
_mm subs_epu8 N/A N/A N/A A N/A
_mm subs_epul6 N/A N/A N/A A N/A
_mm and_si 128 N/A N/A N/A A N/A

328

Intel® C++ Intrinsics Reference

Intrinsic Across | MMX™ Streaming | Streaming | Itanium®
All IA | Technology | SIMD SIMD Architecture
Extenions | Extensions
2
_mm andnot _si 128 N/A N/A N/A A N/A
_mm.or_si 128 N/A N/A N/A A N/A
_mm xor _si 128 N/A N/A N/A A N/A
_mmslli_si128 N/A N/A N/A A N/A
~mmslli_epil6 N/A N/A N/A A N/A
_mmsl| _epi16 N/A N/A N/A A N/A
~mmslli_epi32 N/A N/A N/A A N/A
_mm sl _epi 32 N/A N/A N/A A N/A
_mmslli_epi64 N/A N/A N/A A N/A
~mmsl | _epi64 N/A N/A N/A A N/A
_mm srai _epi 16 N/A N/A N/A A N/A
_mm sra_epi 16 N/A N/A N/A A N/A
_mm srai _epi 32 N/A N/A N/A A N/A
_mm sra_epi 32 N/A N/A N/A A N/A
_mmsrli_sil28 N/A N/A N/A A N/A
_mmsrli_epi16 N/A N/A N/A A N/A
_mmsrl _epi 16 N/A N/A N/A A N/A
_mmsrli_epi32 N/A N/A N/A A N/A
_mm.srl_epi 32 N/A N/A N/A A N/A
_mmsrli_epi 64 N/A N/A N/A A N/A
_mm srl_epi 64 N/A N/A N/A A N/A
_mm cnpeq_epi 8 N/A N/A N/A A N/A

329

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Across | MMX™ Streaming | Streaming | Itanium®
All IA | Technology | SIMD SIMD Architecture
Extenions | Extensions
2
_mm cnpeg_epi 16 N/A N/A N/A A N/A
_mm cnpeq_epi 32 N/A N/A N/A A N/A
_mm cnpgt _epi 8 N/A N/A N/A A N/A
_mm cnpgt _epi 16 N/A N/A N/A A N/A
_mm cnpgt _epi 32 N/A N/A N/A A N/A
_mmecnplt_epi 8 N/A N/A N/A A N/A
_mmecnplt_epi 16 N/A N/A N/A A N/A
_mmecnplt_epi 32 N/A N/A N/A A N/A
_mmecvtsi32_si128 | N/A N/A N/A A N/A
_mm cvtsi 128_si 32 N/A N/A N/A A N/A
_mm packs_epi 16 N/A N/A N/A A N/A
_mm packs_epi 32 N/A N/A N/A A N/A
_mm packus_epi 16 N/A N/A N/A A N/A
_mmextract_epi 16 | N/A N/A N/A A N/A
_mm.insert_epi 16 N/A N/A N/A A N/A
_mm nmovenmask_epi 8 N/A N/A N/A A N/A
_mm shuffle_epi 32 N/A N/A N/A A N/A
_mm shuffl ehi _epi 16 | N/A N/A N/A A N/A
_mm shufflel o_epi 16 | N/A N/A N/A A N/A
mm unpackhi _epi 8 N/A N/A N/A A N/A
_mm unpackhi _epi 16 | N/A N/A N/A A N/A
_mm unpackhi _epi 32 |N/A N/A N/A A N/A

330

Intel® C++ Intrinsics Reference

Intrinsic Across | MMX™ Streaming | Streaming | Itanium®
All IA | Technology | SIMD SIMD Architecture
Extenions | Extensions
2
_mm unpackhi _epi 64 | N/A N/A N/A A N/A
_mm unpackl o_epi 8 N/A N/A N/A A N/A
_mm unpackl o_epi 16 |N/A N/A N/A A N/A
_mm unpackl o_epi 32 |N/A N/A N/A A N/A
_mm unpackl o_epi 64 |N/A N/A N/A A N/A
_nm nove_epi 64 N/A N/A N/A A N/A
_mm_novpi 64_epi 64 N/A N/A N/A A N/A
_mm _novepi 64_pi 64 N/A N/A N/A A N/A
_mm | oad_si 128 N/A N/A N/A A N/A
_mm | oadu_si 128 N/A N/A N/A A N/A
_nmm | oadl _epi 64 N/A N/A N/A A N/A
_mm set _epi 64 N/A N/A N/A A N/A
_mm set _epi 32 N/A N/A N/A A N/A
_mm set _epi 16 N/A N/A N/A A N/A
_mm set_epi 8 N/A N/A N/A A N/A
_nm set1_epi 64 N/A N/A N/A A N/A
_mm setl epi 32 N/A N/A N/A A N/A
_nm set1 epi16 N/A N/A N/A A N/A
_mmsetl _epi8 N/A N/A N/A A N/A
_mm setr_epi 64 N/A N/A N/A A N/A
_mm setr_epi 32 N/A N/A N/A A N/A
_mm setr_epi 16 N/A N/A N/A A N/A

331

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Across | MMX™ Streaming | Streaming | Itanium®
All IA | Technology | SIMD SIMD Architecture
Extenions | Extensions
2
_mm setr_epi 8 N/A N/A N/A A N/A
_nmm setzero_si 128 N/A N/A N/A A N/A
_mm store_si 128 N/A N/A N/A A N/A
_nmm storeu_si 128 N/A N/A N/A A N/A
_mm storel _epi 64 N/A N/A N/A A N/A
_mm masknoveu_si 128 | N/A N/A N/A A N/A
_mm st ream pd N/A N/A N/A A N/A
_mm stream si 128 N/A N/A N/A A N/A
_mmcl flush N/A N/A N/A A N/A
~mm | fence N/A N/A N/A A N/A
_nm nf ence N/A N/A N/A A N/A
_mm stream si 32 N/A N/A N/A A N/A
_hm_pause N/A N/A N/A A N/A

Intel® C++ Class Libraries

Introduction to the Class Libraries

The Intel® C++ Class Libraries enable Single-Instruction, Multiple-Data (SIMD) operations. The
principle of SIMD operations is to exploit microprocessor architecture through parallel processing.
The effect of parallel processing is increased data throughput using fewer clock cycles. The
objective is to improve application performance of complex and computation-intensive audio,
video, and graphical data bit streams.

Hardware and Software Requirements

You must have the Intel® C++ Compiler version 4.0 or higher installed on your system to use the
class libraries. The Intel® C++ Class Libraries are functions abstracted from the instruction
extensions available on Intel processors as specified in the table that follows.

Processor Requirements for Use of Class Libraries

332

Intel® C++ Intrinsics Reference

Header Extension Set Available on These Processors
File

ivec.h | MMX™ technology | Pentium® with MMX technology, Pentium II, Pentium III,
Pentium 4, Intel® Xeon™, and Itanium® processors

fvec. h Streaming SIMD Pentium III, Pentium 4, Intel Xeon, and Itanium processors
Extensions
dvec. h | Streaming SIMD Pentium 4 and Intel Xeon processors

Extensions 2

About the Classes
The Intel® C++ Class Libraries for SIMD Operations include:
e Integer vector (I vec) classes
* Floating-point vector (Fvec) classes

You can find the definitions for these operations in three header files: i vec. h, f vec. h, and
dvec. h. The classes themselves are not partitioned like this. The classes are named according to
the underlying type of operation. The header files are partitioned according to architecture:

* ivec. his specific to architectures with MMX™ technology
» fvec. his specific to architectures with Streaming SIMD Extensions
* dvec. h is specific to architectures with Streaming SIMD Extensions 2

Streaming SIMD Extensions 2 intrinsics cannot be used on Itanium®-based systems. The
nmtl ass. h header file includes the classes that are usable on the Itanium architecuture.

This documentation is intended for programmers writing code for the Intel architecture,
particularly code that would benefit from the use of SIMD instructions. You should be familiar
with C++ and the use of C++ classes.

333

Details About the Libraries

The Intel® C++ Class Libraries for SIMD Operations provide a convenient interface to access the
underlying instructions for processors as specified in Processor Requirements for Use of Class
Libraries. These processor-instruction extensions enable parallel processing using the single
instruction-multiple data (SIMD) technique as illustrated in the following figure.

SIMD Data Flow

A3 A2 A1 AO
B3 B2 B1 BoO

v

IA3opB3AZopB= A1opB1/A00PBO

Performing four operations with a single instruction improves efficiency by a factor of four for
that particular instruction.

These new processor instructions can be implemented using assembly inlining, intrinsics, or the
C++ SIMD classes. Compare the coding required to add four 32-bit floating-point values, using
each of the available interfaces:

Comparison Between Inlining, Intrinsics and Class Libraries

Assembly Inlining Intrinsics SIMD Class
Libraries
__m28 a, b, c; #i ncl ude <nmintrin. h> #i ncl ude
__asm{ novaps xmD, b ... __m28 a,b,c; a= <fvec.h> ...
nmovaps xnmml, ¢ addps _mm add_ps(b,c); ... F32vec4 a, b, c;
xmD, xmml novaps a, a = b +c;
xmm0 } ...

The table above shows an addition of two single-precision floating-point values using assembly
inlining, intrinsics, and the libraries. You can see how much easier it is to code with the Intel C++
SIMD Class Libraries. Besides using fewer keystrokes and fewer lines of code, the notation is like
the standard notation in C++, making it much easier to implement over other methods.

C++ Classes and SIMD Operations

The use of C++ classes for SIMD operations is based on the concept of operating on arrays, or
vectors of data, in parallel. Consider the addition of two vectors, A and B, where each vector
contains four elements. Using the integer vector (I vec) class, the elements A[i] and B[i]
from each array are summed as shown in the following example.

Typical Method of Adding Elements Using a Loop

short a[4], b[4], c[4];
for (i=0; i<4; i++) /* needs four iterations */
c[i] = a[i] + b[i]; /* returns c[0], c[1], c[2], c[3] *

The following example shows the same results using one operation with | vec Classes.
SIMD Method of Adding Elements Using Ivec Classes

sl sl6vec4 ivecA, ivecB, ivec C, /*needs one iteration */
ivecC = ivecA + ivecB; /*returns ivecCO, ivecCl, ivecC2, ivecC3 */

334

Intel® C++ Intrinsics Reference

Available Classes

The Intel C++ SIMD classes provide parallelism, which is not easily implemented using typical
mechanisms of C++. The following table shows how the Intel C++ SIMD classes use the classes

and libraries.

SIMD Vector Classes

Instruction Set | Class Signedness | Data Size | Elements | Header
Type File

MMX™ | 64vecl unspecified __nb4 64 1 ivec. h

technology

(available for

IA-32- and

[tanium®-based

systems)
| 32vec?2 unspecified i nt 32 2 ivec. h
I s32vec2 | signed i nt 32 |2 ivec.h
Il u32vec?2 unsigned i nt 32 2 ivec.h
I 16vec4 | unspecified |short 16 |4 ivec.h
I sl6vec4 | signed short 16 4 ivec.h
I ulévec4 | unsigned short 16 4 ivec.h
| 8vec8 unspecified | char 8 8 ivec.h
I s8vec8 | signed char 8 8 ivec.h
lu8vec8 | unsigned char 8 8 ivec.h

Streaming SIMD | F32vec4 | signed f1 oat 32 |4 fvec. h

Extensions

(available for

[A-32 and

Itanium-based

systems)
F32vecl signed fl oat 32 1 fvec. h

Streaming SIMD | F64vec2 | signed double |64 |2 dvec. h

Extensions 2

(available for

[A-32-based

systems only)

335

Instruction Set | Class Signedness | Data Size | Elements | Header
Type File
| 128vecl | unspecified |__ml28i |128 |1 dvec. h
| 64vec2 | unspecified || otng 64 |4 dvec. h
in
| s64vec2 | signed ! otng 64 |4 dvec. h
in
| u64vec?2 | unsigned : gtng 32 |4 dvec. h
I 32vec4 | unspecified |int 32 |4 dvec. h
I s32vec4 | signed i nt 32 |4 dvec. h
l u32vec4 | unsigned i nt 32 |4 dvec. h
| 16vec8 | unspecified |int 16 |8 dvec. h
I sl6vecs8 | signed i nt 16 |8 dvec. h
| ulévec8 | unsigned i nt 16 |8 dvec. h
I 8vecl6 | unspecified |char 8 16 dvec. h
| s8vecl6 | signed char 8 16 dvec. h
l u8vecl6 | unsigned char 8 16 dvec. h

Most classes contain similar functionality for all data types and are represented by all available
intrinsics. However, some capabilities do not translate from one data type to another without

suffering from poor performance, and are therefore excluded from individual classes.

ﬂ Note

Intrinsics that take immediate values and cannot be expressed easily in classes are not

implemented.

(For example, _nm shuffl e_ps, mm shuffle_pi 16, _nmm extract _pi 16,

_mm.insert_pi 16).

336

Intel® C++ Intrinsics Reference

Access to Classes Using Header Files

The required class header files are installed in the include directory with the Intel® C++ Compiler.
To enable the classes, use the #i ncl ude directive in your program file as shown in the table that
follows.

Include Directives for Enabling Classes

Instruction Set Extension | Include Directive

MMX Technology #i ncl ude <ivec. h>

Streaming SIMD Extensions | #i ncl ude <fvec. h>

Streaming SIMD Extensions 2 | #i ncl ude <dvec. h>

Each succeeding file from the top down includes the preceding class. You only need to include
f vec. h if you want to use both the | vec and Fvec classes. Similarly, to use all the classes
including those for the Streaming SIMD Extensions 2, you need only to include the dvec. h file.

Usage Precautions

When using the C++ classes, you should follow some general guidelines. More detailed usage
rules for each class are listed in Integer Vector Classes, and Floating-point Vector Classes.

Clear MMX Registers

If you use both the | vec and Fvec classes at the same time, your program could mix MMX
instructions, called by | vec classes, with Intel x87 architecture floating-point instructions, called
by Fvec classes. Floating-point instructions exist in the following Fvec functions:

» fvec constructors
* debug functions (cout and element access)

e rsqrt_nr

BNote

MMX registers are aliased on the floating-point registers, so you should clear the MMX state with
the EMMS instruction intrinsic before issuing an x87 floating-point instruction, as in the following

example.
ivecA = ivecA & /* Ivec |ogical operation that uses MW
i vecB; i nstructions */
empty (); /* clear state */

cout << f32vecda; |/* F32vec4 operation that uses x87 floating-
poi nt instructions */

& Caution

Failure to clear the MMX registers can result in incorrect execution or poor performance due to an
incorrect register state.

337

Follow EMMS Instruction Guidelines

Intel strongly recommends that you follow the guidelines for using the EMMS instruction. Refer
to this topic before coding with the | vec classes.

Capabilities
The fundamental capabilities of each C++ SIMD class include:
* computation
* horizontal data motion
* branch compression/elimination
» caching hints

Understanding each of these capabilities and how they interact is crucial to achieving desired
results.

Computation

The SIMD C++ classes contain vertical operator support for most arithmetic operations, including
shifting and saturation.

Computation operations include: +, -, *, / , reciprocal (r cp and r cp_nr), square root (Sqrt),
reciprocal square root (rsqrt andrsqrt_nr).

Operations r cp and r SQrt are new approximating instructions with very short latencies that
produce results with at least 12 bits of accuracy. Operations r Cp_nr and rsqrt _nr use
software refining techniques to enhance the accuracy of the approximations, with a minimal
impact on performance. (The "nr " stands for Newton-Raphson, a mathematical technique for
improving performance using an approximate result.)

Horizontal Data Support

The C++ SIMD classes provide horizontal support for some arithmetic operations. The term
"horizontal" indicates computation across the elements of one vector, as opposed to the vertical,
element-by-element operations on two different vectors.

The add_hori zont al , unpack_| owand pack_sat functions are examples of horizontal
data support. This support enables certain algorithms that cannot exploit the full potential of SIMD
instructions.

Shuffle intrinsics are another example of horizontal data flow. Shuffle intrinsics are not expressed
in the C++ classes due to their immediate arguments. However, the C++ class implementation
enables you to mix shuffle intrinsics with the other C++ functions. For example:

F32vec4 fveca, fvecb, fvecd;
fveca += fvech;
fvecd = mmshuffle_ps(fveca, fvech, 0);

Typically every instruction with horizontal data flow contains some inefficiency in the
implementation. If possible, implement your algorithms without using the horizontal capabilities.

Branch Compression/Elimination

Branching in SIMD architectures can be complicated and expensive, possibly resulting in poor
predictability and code expansion. The SIMD C++ classes provide functions to eliminate
branches, using logical operations, max and min functions, conditional selects, and compares.
Consider the following example:

short a[4], b[4], c[4];

for (i=0; i<4; i++)

c[i] = a[i] > b[i] ? a[i] : b[i];

338

Intel® C++ Intrinsics Reference

This operation is independent of the value of i . For each i , the result could be either A or B
depending on the actual values. A simple way of removing the branch altogether is to use the
sel ect _gt function, as follows:

| sl6vecd a, b, c
c = select_gt(a, b, a, b)

Caching Hints

Streaming SIMD Extensions provide prefetching and streaming hints. Prefetching data can
minimize the effects of memory latency. Streaming hints allow you to indicate that certain data
should not be cached. This results in higher performance for data that should be cached.

Integer Vector Classes

The | vec classes provide an interface to SIMD processing using integer vectors of various sizes.
The class hierarchy is represented in the following figure.

Ivec Class Hierarchy

[16avact | [132veca] [1ewecs] [1owees | [M2gwact| [16avacz | [1azveca | [11eweca | [iBvects |

=32vee2| | luddvac? l=32vecd | | luddvecd

lsvese

OMORIE

The M64 and ML28 classes define the 64 and ___ml28i data types from which the rest of the
| vec classes are derived. The first generation of child classes are derived based solely on bit sizes
of 128, 64, 32, 16, and 8 respectively for the | 128vecl, | 64vecl, 164vec2,| 32vec?2,

| 32vec4, | 16vecd, | 16vec8, | 8vecl6, and | 8vec8 classes. The latter seven of the these
classes require specification of signedness and saturation.

& Caution

Do not intermix the M64 and ML28 data types. You will get unexpected behavior if you do.

The signedness is indicated by the S and U in the class names:

| s64vec?2
| ué4vec?
| s32vec4
|l u32vec4
| slévec8
|l ulévec8
| s8vecl6
| u8vecl6
| s32vec?2
Il u32vec?2
| sl6vec4
Il ulévec4
| s8vec8

| u8vecs8

339

Terms, Conventions, and Syntax

The following are special terms and syntax used in this chapter to describe functionality of the
classes with respect to their associated operations.

Ivec Class Syntax Conventions

The name of each class denotes the data type, signedness, bit size, number of elements using the
following generic format:

<t ype><si gnedness><bi t s>vec<el enent s>

{F] 1} {s] u} {64] 32| 16| 8} vec { 8] 4| 2| 1}
where
type indicates floating point (F) or integer (|)

si gnedness | indicates signed (S) or unsigned (U). For the Ivec class, leaving this field
blank indicates an intermediate class. There are no unsigned Fvec classes,
therefore for the Fvec classes, this field is blank.

bits specifies the number of bits per element

el ement s specifies the number of elements

Special Terms and Conventions

The following terms are used to define the functionality and characteristics of the classes and
operations defined in this manual.

* Nearest Common Ancestor -- This is the intermediate or parent class of two classes of the
same size. For example, the nearest common ancestor of | u8vec8 and | s8vec8 is
| 8vec8. Also, the nearest common ancestor between | u8vec8 and | 16vec4 is M64.

* Cagting -- Changes the data type from one class to another. When an operation uses
different data types as operands, the return value of the operation must be assigned to a
single data type. Therefore, one or more of the data types must be converted to a required
data type. This conversion is known as a typecast. Sometimes, typecasting is automatic,
other times you must use special syntax to explicitly typecast it yourself.

e Operator Overloading -- This is the ability to use various operators on the same user-
defined data type of a given class. Once you declare a variable, you can add, subtract,
multiply, and perform a range of operations. Each family of classes accepts a specified range
of operators, and must comply by rules and restrictions regarding typecasting and operator
overloading as defined in the header files. The following table shows the notation used in
this documention to address typecasting, operator overloading, and other rules.

340

Intel® C++ Intrinsics Reference

Class Syntax Notation Conventions

Class Name Description

ITs|u]l [N]vec[N | Any value except | 128vecl nor | 64vecl
| 64vecl __ b4 data type

I [s]u] 64vec2 two 64-bit values of any signedness

I[s|u] 32vec4 four 32-bit values of any signedness

I [s|u] 8vecl6 eight 16-bit values of any signedness
I[s|u]16vec8 sixteen 8-bit values of any signedness

I [s]u] 32vec2 two 32-bit values of any signedness

I[s|u] 16vec4 four 16-bit values of any signedness

I [s]u] 8vec8 eight 8-bit values of any signedness

Rules for Operators

To use operators with the | vec classes you must use one of the following three syntax
conventions:

[lvec Jass] R=] lvec_ Cass] A[operator][lvec_ Class] B
Examplel: | 64vecl R = |164vecl A & | 64vecl B;

[Ivec_Cass] R =[operator] ([lvec_Cass] A[lvec_Cass] B)
Example2: | 64vecl R = andnot (I 64vecl A, |64vecl B);

[Ivec_Cass] R[operator]=[lvec_Cass] A

Example3: | 64vecl R &= | 64vecl A

[oper at or]an operator (for example, &, |, or *)

[lvec_Class]anl vec class

R, A, B variables declared using the pertinent | vec classes

The table that follows shows automatic and explicit sign and size typecasting. "Explicit" means
that it is illegal to mix different types without an explicit typecasting. "Automatic" means that you
can mix types freely and the compiler will do the typecasting for you.

341

Summary of Rules Major Operators

Operators Sign Size Other Typecasting Requirements
Typecasting | Typecasting
Assignment N/A N/A N/A
Logical Automatic Automatic Explicit typecasting is required for
(to left) different types used in non-logical
expressions on the right side of the
assignment.

Addition and Automatic Explicit N/A

Subtraction

Multiplication Automatic Explicit N/A

Shift Automatic Explicit Casting Required to ensure arithmetic
shift.

Compare Automatic Explicit Explicit casting is required for signed
classes for the less-than or greater-than
operations.

Conditional Automatic Explicit Explicit casting is required for signed

Select classes for less-than or greater-than
operations.

Data Declaration and Initialization

The following table shows literal examples of constructor declarations and data type initialization
for all class sizes. All values are initialized with the most significant element on the left and the

least significant to the right.

Declaration and Initialization Data Types for Ivec Classes

Operation Class Syntax

Declaration ML28 | 128vecl A; | u8vecl6 A;

Declaration M4 | 64vecl A; | u8vecl6 A;

_ ml28 ML28 | 128vecl A(__ nl28 m); lul6vec8(__ml28
Initialization ;

__nb4 V64 | 64vecl A(__n64 n);luBvec8 A(__nbd m;
Initialization

__int64 V64 | 64vecl A = __ int64 m lu8vec8 A
Initialization = int64 m

342

Intel® C++ Intrinsics Reference

Operation

Class

Syntax

int i
Initialization

M54

| 64vecl A =int i; luBvec8 A = int i

i nt initialization

| 32vec?2

| 32vec2 A(int Al, int AO);

| s32vec2 A(signed int Al, signed int

A0) ;

lu32vec2 A(unsigned int Al, unsigned int
A0) ;

i nt Initialization

| 32vec4

| 32vec4 A(short A3, short A2, short Al,
short AO0);

| s32vecd4 A(signed short A3, ..., signed
short AO0);

lu32vecd4 A(unsigned short A3, ...,

unsi gned short AO0);

short int
Initialization

| 16vec4

| 16vec4 A(short A3, short A2, short AL,
short AO0);

| sl6vecd4 A(signed short A3, ..., signed
short AO0);

lulévecd4 A(unsigned short A3, ...

unsi gned short AO0);

short int
Initialization

| 16vec8

| 16vec8 A(short A7, short A6, ..., short
Al, short AQ);

| slévec8 A(signed A7, ..., signed short
A0) ;

lulévec8 A(unsigned short A7, ...,

unsi gned short A0);

char
Initialization

| 8vec8

| Bvec8 A(char A7, char A6, ..., char A1l,
char AQ);

| s8vec8 A(signed char A7, ..., signed
char A0);

| u8vec8 A(unsi gned char A7, ...

unsi gned char AQ);

char
Initialization

| 8vecl6b

| 8vecl6 A(char Al5, ..., char A0);

| s8vecl6 A(signed char Al5, ..., signed
char AQ);

| u8vecl6 A(unsigned char Al5, ...,

unsi gned char AQ);

343

Assignment Operator

Any | vec object can be assigned to any other | vec object; conversion on assignment from one
| vec object to another is automatic.

Assignment Operator Examples

| sl6vecd A

| s8vec8 B;

| 64vecl C

A =B; /* assign Is8vec8 to |Isl6vecd */

B=C /* assign |64vecl to |Is8vec8 */

B=A&C /* assign M64 result of '& to Is8vec8 */

Logical Operators

The logical operators use the symbols and intrinsics listed in the following table.

Bitwise Operator Symbols | Syntax Usage Corresponding
Operation Intrinsic

Standard | w/assign | Standard w/assign

AND & &= R=A&B R&=A _mm and_si 64
_mm and_si 128

OR = R=A|B REFA _mm and_si 64
_mm and_si 128

XOR A A= R=A"B R"=A |_nmand_si 64
_mm and_si 128

ANDNOT andnot N/A R=A N/A _mm an d_s! 64
andnot B _mm and_si 128

Logical Operators and Miscellaneous Exceptions.

A and B converted to M64. Result assigned to | u8vecs8.

| 64vecl A

| s8vec8 B;

| u8vec8 C,

C=AZ&B;

Same size and signedness operators return the nearest common ancestor.
| 32vec2 R = Is32vec2 A ™ 1u32vec2 B;

A&B returns M64, which is cast to | u8vecs8.

C = lu8vec8(A&B) + C;

When A and B are of the same class, they return the same type. When A and B are of different
classes, the return value is the return type of the nearest common ancestor.

The logical operator returns values for combinations of classes, listed in the following tables,
apply when A and B are of different classes.

344

Intel® C++ Intrinsics Reference

Ivec Logical Operator Overloading

Return (R) | AND | OR | XOR | NAND | A Operand B Operand

| 64vecl R| & | A andnot || [s| u] 64vec2 A|I[s|u] 64vec2 B
| 64vec2 R| & | A andnot | I [s| u] 64vec2 A|I[s|u] 64vec2 B
| 32vec2 R | & | A andnot | I [s| u] 32vec2 A|I[s|u]32vec2 B
| 32vecd R | & | A andnot | I [s| u] 32vec4 A|I[s|u]32vecd B
| 16vecd R| & | A andnot | I [s| u] 16vec4 A|l[s|u] 16vecd B
| 16vec8 R| & | A andnot | I [s|u] 16vec8 A|lI[s|u] 16vec8 B
| 8vec8 R | & | A andnot | I [s|u]8vec8 A |I[s|u]8vec8 B

| 8veclt R| & | A andnot | I [s|u] 8vecl6 A|I[s|u]8vecl6 B

For logical operators with assignment, the return value of R is always the same data type as the

pre-declared value of R as listed in the table that follows.

Ivec Logical Operator Overloading with Assignment

Return Type | Left Side (R) | AND | OR | XOR | Right Side (Any Ivec Type)
|128vecl |1128vecl R |&= ||= | ~= |I[s|ul[Nlvec[N] A
| 64vecl 64vecl R |&= ||= |~= |I[s|ul[Nlvec[N] A
| 64vec? I64vec2 R |&= ||= |~= |I[s|ul[Nlvec[N] A
I[x]32vec4 |I[x]32vecd R|&= ||= | ~= |I[s|ul[Nlvec[N A
I[x]32vec2 |I[x]32vec2 R|&= ||= | ~= |I[s|ul[Nlvec[N A
I[x] 16vec8 | I[x]16vec8 R|&= ||= | ~= |I[s|ul[Nlvec[N A
I[x] 16vec4 |I[x]16vecd R|&= ||= | ~= |I[s|u][Nlvec[N A
I[x]8vecl6 |I[x]8veclé R|&= ||= | ~= |I[s|ul[Nlvec[N] A
I[x]8vec8 |I[x]8vec8 R |&= ||= | ~= |I[s|ul[Nlvec[N] A

345

Addition and Subtraction Operators

The addition and subtraction operators return the class of the nearest common ancestor when the
right-side operands are of different signs. The following code provides examples of usage and
miscellaneous exceptions.

Syntax Usage for Addition and Subtraction Operators
Return nearest common ancestor type, | 16vec4.

| sl6vecd A

lul6vec4d B;

| 16vecd C

C=A+8B

Returns type left-hand operand type.

| sl6vecd A

lulévec4d B;

A += B

B -=A

Explicitly convert B to | s16vec4.

I sl6vecd A, C

| u32vec24 B

C=A+C

C = A+ (Isl6vecd)B;

Addition and Subtraction Operators with Corresponding Intrinsics

Operation | Symbols | Syntax Corresponding Intrinsics

Addition + R=A+B |_nm add_epi 64
4= R+=A _mm add_epi 32
_mm add_epi 16
_mm add_epi 8
_mm add_pi 32
_mm add_pi 16
_mm add_pi 8

Subtraction | - R=A-B |_nmsub_epi 64
= R-=A _mm sub_epi 32
_mm sub_epi 16
_mm sub_epi 8
_mm sub_pi 32
_mm sub_pi 16
_mmsub _pi 8

The following table lists addition and subtraction return values for combinations of classes when
the right side operands are of different signedness. The two operands must be the same size,
otherwise you must explicitly indicate the typecasting.

346

Intel® C++ Intrinsics Reference

Addition and Subtraction Operator Overloading

Return Value | Available Operators | Right Side Operands

R Add Sub A B

| 64vec2 R |+ - I[s|u] 64vec2 A|l[s|u] 64vec2 B
| 32vecd R |+ - I[s|u]32vecd A|lI[s|u]32vecd4 B
| 32vec2 R |+ - I[s|u]32vec2 A|lI[s|u]32vec2 B
| 16vec8 R |+ - I[s|u] 16vec8 A|l[s|u] l6vec8 B
| 16vecd R |+ - I[s|u]l6vecd A|lI[s|u] l6vecd B
| 8vec8 R + - I[s|u]8vec8 A |I[s|u]8vec8 B
| 8vecl6 R |+ - I[s|u]8vec2 A |I[s|u]8vecl6 B

The following table shows the return data type values for operands of the addition and subtraction
operators with assignment. The left side operand determines the size and signedness of the return
value. The right side operand must be the same size as the left operand; otherwise, you must use
an explicit typecast.

Addition and Subtraction with Assignment

Return Value (R) | Left Side (R) Add | Sub | Right Side (A)

I [x] 32vec4 I[x]32vec2 R|+= |-= I [s|u] 32vecd A
I[x]32vec2 R |I[x]32vec2 R|+= |-= I[s|u] 32vec2 A
I [x] 16vec8 I [x] 16vec8 += | = I[s|u] 16vec8 A
I [x] 16vec4 I [x] 16vec4 += | = I [s|u] 16vecd A
I [x] 8vecl6 I [x] 8vecl6 += | = I[s|u] 8veclt A
| [x] 8vec8 | [x] 8vec8 += | = I [s|u] 8vec8 A

347

Multiplication Operators

The multiplication operators can only accept and return data types from the | [S| u] 16vec4 or
I [s| u] 16vecs8 classes, as shown in the following example.

Syntax Usage for Multiplication Operators
Explicitly convert B to | s16vec4.

I slévecd A, C

lu32vec2 B;

C=A*C

C=A* (Isl6vecd)B;

Return nearest common ancestor type, | 16vec4
| sl6vecd A

lul6vec4d B,

| 16vecd C,

C=A+ B

The mul _hi gh and mul _add functions take | s16vec4 data only.
I slévecd4 A B, C D

C = mul _hi gh(A, B);

D = mul _add(A B);

Multiplication Operators with Corresponding Intrinsics

Symbols Syntax Usage Intrinsic
* *= |R=A*B _mmmullo_pil6
R *= A _mmmull o_epi 16
mul _hi gh [N/A | R = nul _hi gh(A, B) |_nm nul hi _pi 16
_mm _rul hi _epi 16
mul _add |N/A |R = mul _high(A, B) | _mm madd_pi 16
_mm neadd_epi 16

The multiplication return operators always return the nearest common ancestor as listed in the
table that follows. The two operands must be 16 bits in size, otherwise you must explicitly indicate
typecasting.

Multiplication Operator Overloading

R Mul A B

| 16vecd R | *

I[s|u] 16vecd A

I[s|u]lévecd B

| 16vec8 R | * I[s|u] 16vec8 A|l[s|u] 16vec8 B
| slévecd R|nul _add |Isl6vecd A I slévecd4 B
| sl6évec8 mul _add |Ilsl6évec8 A | slévec8 B

348

Intel® C++ Intrinsics Reference

R Mul A B
| s32vec2 R|mul _high|lIsl6vecd A | sl6vecd B
| s32vec4 R|mul _high|sl6vec8 A | s16vec8 B

The following table shows the return values and data type assignments for operands of the
multiplication operators with assignment. All operands must be 16 bytes in size. If the operands
are not the right size, you must use an explicit typecast.

Multiplication with Assignment

Return Value (R) | Left Side (R) | Mul | Right Side (A)

I [x] 16vec8 I[x] 16vec8 | *= |I1[s|u]16vec8 A

I [x] 16vecd I [x] 16vecd | *= |1[s]|u] 16vecd A

Shift Operators

The right shift argument can be any integer or Ivec value, and is implicitly converted to a M64
data type. The first or left operand of a << can be of any type except | [S| u] 8vec[8| 16] .

Example Syntax Usage for Shift Operators
Automatic size and sign conversion.

I sl6vecd A C

lu32vec2 B;

C=A

A&B returns | 16vec4, which must be cast to | ul6vec4 to ensure logical shift, not arithmetic
shift.

| slévec4 A C;
lulévec4 B, R
R = (lul6vecd) (A & B) G

A&B returns | 16vec4, which must be cast to | S16vec4 to ensure arithmetic shift, not logical
shift.

R = (1sl6vecd) (A & B) G

349

Shift Operators with Corresponding Intrinsics

Operation | Symbols | Syntax Usage | Intrinsic
Shift Left | << R=A<<B _mmsll_si64
= R &= A ~mmslli_si64
_mmsl| _pi32
_mmslli_pi32
~mmsll1 _pi 16
~mmslli_pil6
Shift Right | >> R=A>>B _mmsrl _si64
R>>=A _mmsrli_si64
_mmsrl _pi 32
_mmsrli_pi32
_mmsrl_pil6
_mmsrli_pil6
_mm.sra_pi 32
mm srai _pi 32
_mmsra_pi 16
nmm srai _pi 16

Right shift operations with signed data types use arithmetic shifts. All unsigned and intermediate
classes correspond to logical shifts. The table below shows how the return type is determined by
the first argument type.

Shift Operator Overloading

Operation | R Right Left A B
Shift Shift

Logical | 64vecl |>> |>>= |<< [<<= ||64vecl | 64vecl B
A

Logical I32vec2 |>> |>>= |<< |<<= |132vec2 A |I132vec?2 B;

Arithmetic | 15S32vec2 | >> [>>= |<< |<<= |ls32vec2 I[s|ul [N vec[N
A B;

Logical lu32vec2 |>> |>>= |<< | <<= |lu32vec2 I[s|ul [N vec[N
A B;

Logical | 16vecd |>> |>>= |<< |<<= |l16vec4 A || 1l6vecd4 B

Arithmetic |l sl6vecd | >> [>>= |<< |<<= |lsl6vec4d I[s|ul [N vec[N
A B;

Logical lulévecd |>> |>>= |<< |<<= |lul6vec4 I[s|ul [N vec[N
A B;

350

Intel® C++ Intrinsics Reference

Comparison Operators

The equality and inequality comparison operands can have mixed signedness, but they must be of
the same size. The comparison operators for less-than and greater-than must be of the same sign
and size.

Example of Syntax Usage for Comparison Operator

The nearest common ancestor is returned for compare for equal/not-equal operations.
| u8vec8 A,

| s8vec8 B;

| 8vec8 C;

C = cmpneq(A B);

Type cast needed for different-sized elements for equal/not-equal comparisons.
lu8vec8 A C

I slévec4 B;

C = cnpeq(A, (1u8vec8) B)

Type cast needed for sign or size differences for less-than and greater-than comparisons.
lulévecd A

Islévecd4 B, C

C = cnpge((1 slévecd) A B)

C = cnpgt (B, O ;

Inequality Comparison Symbols and Corresponding Intrinsics

Compare Operators | Syntax Intrinsic
For:
Equality cnpeq R = cnpeq(A, | _mm.cnpeq_pi 32
B) _nmm cnpeq_pi 16
_mm cnpeq_pi 8
Inequality crpneq R = _mm cnpeq_pi 32 | _nm andnot _si 64
cnpneq(A, B) |_nm cnpeq_pi 16
_nmm cnpeq_pi 8
Greater Than | cnpgt R = cnpgt (A, | _mm cnpgt _pi 32
B) _mm cnpgt _pi 16
_mm cnpgt _pi 8
Greater Than | cnpge R = cnpge(A, |_nmm.cnpgt_pi 32 | _mm andnot _si 64
or Equal To B) _mm_cnpgt _pi 16
_mm cnpgt_pi 8
Less Than cnpl t R =cmplt(A |[_mmcnpgt_pi 32
B) _mm cnpgt _pi 16
_mm cnpgt _pi 8
Less Than cnpl e R = cnpl e(A, |_nm.cnpgt _pi 32 _nm andnot _si 64
or Equal To B) _mm _cnpgt _pi 16
_mm cnpgt_pi 8

351

Comparison operators have the restriction that the operands must be the size and sign as listed in

the Compare Operator Overloading table.

Compare Operator Overloading

R Comparison | A B
| 32vec2 R|cnpeq I[s|u]32vec2 B|I[s|u] 32vec2 B
cnpne
| 16vecd R I[s|u] 16vec4 B|I[s|u] 16vecd B
| 8vec8 R I[s|u]8vec8 B |I[s|u]8vec8 B
| 32vec2 R | cnpgt | s32vec2 B | s32vec2 B
cnpge
cnpl t
cnpl e
| 16vecd R | sl6vec4 B | sl6vecd4 B
| 8vec8 R | s8vec8 B | s8vec8 B

Conditional Select Operators

For conditional select operands, the third and fourth operands determine the type returned. Third
and fourth operands with same size, but different signedness, return the nearest common ancestor

data type.

Conditional Select Syntax Usage

Return the nearest common ancestor data type if third and fourth operands are of the same size,

but different signs.

| 16vec4 R = sel ect _neq(lsl6vec4,

Conditional Select for Equality

RO := (A0 == B0O) ? CO :
RlL := (Al == Bl1) ? C1 :
R := (A2 == B2) ? 2 :
R3 := (A3 ==B3) ? C3:
Conditional Select for Inequality
RO := (A0 !'=B0) ? CO :
RL:= (Al !=B1) ? Cl1:
R2 := (A2 1=B2) ? C2:
R3 := (A3 !=B3) ? C3:

352

| sl6vec4,

| sl6vec4,

| ulévecd);

Intel® C++ Intrinsics Reference

Conditional Select Symbols and Corresponding Intrinsics

Conditional | Operators Syntax Corresponding Additional
Select For: Intrinsic Intrinsic (Applies
to All)
Equality select_eq |R= _nmm cnpeq_pi 32 | _mm and_si 64
sel ect _eq(A, |_hmcnpeq_pi 16 | _mm or_si 64
B.C D)_ _mm cnpeqg_pi 8 |_mm andnot _si 64
Inequality sel ect _neq |R= _mm cnpeq_pi 32
sel ect _neq(A, | _m cnpeq_pi 16
B, C, D) _mm cnpeq_pi 8
Greater Than |Sel ect_gt |R= _nmm cnpgt _pi 32
sel ect_gt(A, |_mcnpgt_pi 16
B, C, D) _mm cnpgt _pi 8
Greater Than | Sel ect_ge |R= _nmm cnpge_pi 32
or Equal To sel ect_gt (A, |_"m.cnpge_pi 16
B, C, D) _nmm cnpge_pi 8
Less Than select_It |R= _mm cnpl t _pi 32
select _|t(A, |_mmcnplt _pil6
B, C, D) _mmecnplt_pi 8
Less Than select_le |R= _mm cnpl e_pi 32
or Equal To select | e(A, |_mmcnple_pil6
B, C,D) _mmecnple_pi 8

All conditional select operands must be of the same size. The return data type is the nearest
common ancestor of operands Cand D. For conditional select operations using greater-than or
less-than operations, the first and second operands must be signed as listed in the table that

follows.

Conditional Select Operator Overloading

R Comparison | Aand B C D
| 32vec2 R|select_eq |[I[s|u]32vec2 |I[s|u]32vec2 |I[s]|u]32vec2
sel ect _ne
| 16vecd R I[s|u]16vecd |1[s|u]1l6vecd |I[s]|u] 16vecd
| 8vec8 R I[s|u]8vec8 |I1[s|u]8vec8 |I[s]|u]8vec8
| 32vec2 R|select_gt |ls32vec2 | s32vec?2 | s32vec?2
sel ect _ge
select It
| 16vecd R sel ect e | sl6vec4 | slévec4 | sl6vec4
| 8vec8 R | s8vecS8 | s8vec8 | s8vec8

The table below shows the mapping of return values from RO to R7 for any number of elements.
The same return value mappings also apply when there are fewer than four return values.

353

Conditional Select Operator Return Value Mapping

Return Value | A and B Operands C and D operands
AO | Available Operators | BO
RO:= AQ |==|!=|>|>=|<|<=|B0 | ?C0:DO;
R1:= A0 |=|!=|>|>=|<|<=|B0 |?7Cl:DIl;
= A0 |==|1=|>>=|<|<=|B0 |?2C2:D2;
R3:= A0 |==|!=|>|>=|<|<=|B0 |?7C3:D3;
R4:= AOQ |=|!=|>|>=|<|<=|B0 | 7C4:D4;
RS5:= AO |==|!=|>|>=|<|<=|B0 |?C5:D5;
R6:= AQ |==|!=|>|>=|<|<=|B0 | ?C6:D6;
R7:= AO |==|!=|>|>=|<|<=|B0 |?C7:D7;
Debug

The debug operations do not map to any compiler intrinsics for MMX(TM) instructions. They are
provided for debugging programs only. Use of these operations may result in loss of performance,
so you should not use them outside of debugging.

Output

The four 32-bit values of A are placed in the output buffer and printed in the following format
(default in decimal):

cout << |s32vecd A

cout << lu32vec4d A

cout << hex << lu32vec4 A, /* print in hex format */
"[3]:A3 [2]:A2 [1]: Al [0]: AD"

Corresponding Intrinsics: none

The two 32-bit values of A are placed in the output buffer and printed in the following format
(default in decimal):

cout << |s32vec2 A

cout << lu32vec2 A

cout << hex << lu32vec2 A, /* print in hex format */
"[1]: Al [0]: AO"

Corresponding Intrinsics: none

354

Intel® C++ Intrinsics Reference

The eight 16-bit values of A are placed in the output buffer and printed in the following format
(default in decimal):

cout << |sl6vec8 A

cout << lul6vec8 A

cout << hex << lul6vec8 A, /* print in hex format */
"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:Al1 [0O]: AO"
Corresponding Intrinsics: none

The four 16-bit values of A are placed in the output buffer and printed in the following format
(default in decimal):

cout << |sl6vecd A

cout << lul6vecd A

cout << hex << lul6vecd4d A, /* print in hex format */
"[3]:A3 [2]:A2 [1]: Al [O]: AO"

Corresponding Intrinsics: none

The sixteen 8-bit values of A are placed in the output buffer and printed in the following format
(default is decimal):

cout << |s8vecl6 A; cout << |uBvecl6 A; cout << hex << |u8vec8 A;
/* print in hex format instead of decimal*/

"[15]: AL5 [14]:Al4 [13]:A13 [12]:A12 [11]:All [10]:AL0 [9]: A9
[8]:A8 [7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:AL [0]: AO"

Corresponding Intrinsics: none

The eight 8-bit values of A are placed in the output buffer and printed in the following format
(default is decimal):

cout << |s8vec8 A, cout << lu8vec8 A;cout << hex << |u8vec8 A
/* print in hex format instead of decimal*/

"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]: Al [0O]: AO"
Corresponding Intrinsics: none

Element Access Operators
int R=1s64vec2 Ali];
unsigned int R = lu6dvec2 Ali];
int R=1s32vecd4 Ali];
unsigned int R = lu32vecd Ali];
int R=1s32vec2 Ali];
unsigned int R = lu32vec2 Ali];
short R = Isl6vec8 Ali];
unsi gned short R = lul6vec8 Ali];
short R = Isl6vecd Ali];
unsi gned short R = lul6vecd Ali];
signed char R = Is8vecl6 Ali];
unsi gned char R = lu8vecl6 Ali];
signed char R = Is8vec8 Ali];

355

unsi gned char R = lu8vec8 Ali];

Access and read element i of A. If DEBUG is enabled and the user tries to access an element
outside of A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Element Assignment Operators
| s64vec2 Ali] = int R
| s32vecd Ali] int R
lu32vecd4 Ali] = unsigned int R
Is32vec2 Ali] = int R
lu32vec2 Ali] = unsigned int R
| sl6évec8 Ali] = short R;
lulévec8 Ali] = unsigned short R
I sl6vecd Ali] = short R;
lulévecd Ali] = unsigned short R
| s8vecl6 Ali] = signed char R
lu8vecl6 Ali] = unsigned char R;
| s8vec8 Ali]
lu8vec8 Ali] = unsigned char R

signed char R

Assign Rto element i of A. If DEBUG s enabled and the user tries to assign a value to an element
outside of A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Unpack Operators
Interleave the 64-bit value from the high half of A with the 64-bit value from the high half of B.
| 364vec2 unpack_hi gh(164vec2 A, 164vec2 B);
| s64vec2 unpack_hi gh(l1s64vec2 A, |s64vec2 B);
| uédvec?2 unpack_hi gh(lu64vec2 A, |u6dvec2 B);

RO Al;
R1 B1;

Corresponding intrinsic: _nm _unpackhi _epi 64

Interleave the two 32-bit values from the high half of A with the two 32-bit values from the high
halfof B.

| 32vec4 unpack_hi gh(132vec4 A, |32vec4 B);
| s32vec4 unpack_hi gh(1s32vecd4 A, 1s32vec4 B);
| u3d2vec4 unpack_hi gh(lu32vec4 A, 1u32vec4 B);

RO = Al;
R1 = BI;
R2 = A2;
R3 = B2;

Corresponding intrinsic: _nm _unpackhi _epi 32

356

Intel® C++ Intrinsics Reference

Interleave the 32-bit value from the high half of A with the 32-bit value from the high half of B.
| 32vec2 unpack_hi gh(132vec2 A, |32vec2 B)

| s32vec2 unpack_hi gh(1s32vec2 A, 1s32vec2 B);

I u3d2vec2 unpack_hi gh(lu32vec2 A, 1u32vec2 B)

RO = A1l;
R1 = B1;

Corresponding intrinsic: _nm unpackhi _pi 32

Interleave the four 16-bit values from the high half of A with the two 16-bit values from the high
half of B.

| 16vec8 unpack_hi gh(l 16vec8 A, |16vec8 B)
| sil6vec8 unpack_hi gh(lsl6vec8 A, |sl6vec8 B);
| ulévec8 unpack_hi gh(lul6évec8 A, |ul6vec8 B);

RO = A2;
R1 = B2;
R2 = A3;
R3 = B3;

Corresponding intrinsic: _nm _unpackhi _epi 16

Interleave the two 16-bit values from the high half of A with the two 16-bit values from the high
half of B.

| 16vec4 unpack_hi gh(1l 16vec4 A, | 16vec4 B);
| slévecd unpack_hi gh(l1sl6vecd A, |sl6vecd B)
| ulévecd unpack_hi gh(lulévecd4 A, |ul6vecd B);

RO A2: Rl = B2;
R2 A3; R3 = B3;

Corresponding intrinsic: _nm _unpackhi _pi 16

Interleave the four 8-bit values from the high half of A with the four 8-bit values from the high
half of B.

| 8vec8 unpack_hi gh(18vec8 A, 18vec8 B);
| s8vec8 unpack_hi gh(1s8vec8 A, [|8vec8 B)
| u8vec8 unpack_hi gh(lu8vec8 A, [|8vec8 B)

RO = A4;
R1 = B4;
R2 = A5;
R3 = BS5;
R4 = AB6;
R5 = B6;
R6 = A7;
R7 = B7;

Corresponding intrinsic: _nm unpackhi _pi 8

357

Interleave the sixteen 8-bit values from the high half of A with the four 8-bit values from the high
half of B.

| 8Bvecl6 unpack_hi gh(l8vecl6 A, [|8vecl6 B);
| s8vecl1l6 unpack_hi gh(1s8vecl6 A, |8vecl6 B);
| u8vecl6 unpack_hi gh(lu8vecl6é A, |8vecl6 B);

RO = AS8;
R1 = BS;
R2 = A9;
R3 = B9;
R4 = Al0;
R5 = B10;
R6 = Al1;
R7 = B11;
R8 = Al2;
R8 = B12;
R2 = Al13;
R3 = B13;
R4 = Al4;
R5 = B14;
R6 = Al5;
R7 = B15;

Corresponding intrinsic: _nm _unpackhi _epi 16
Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B

RO = AO;
Rl = BO;

Corresponding intrinsic: _nm _unpackl o_epi 32

Interleave the 64-bit value from the low half of A with the 64-bit values from the low half of B
| 64vec2 unpack | ow | 64vec2 A, |64vec2 B);

| s64vec2 unpack | ow(|s64vec2 A, |s64vec2 B);

| u64vec2 unpack | ow(lu6dvec2 A, |ubdvec2 B);

RO = AO;
R1 = BO;
R2 = Al;
R3 = B1;

Corresponding intrinsic: _nm unpackl o_epi 32

Interleave the two 32-bit values from the low half of A with the two 32-bit values from the low
half of B

| 32vec4 unpack | owm132vec4 A, |32vecd B);
| s32vec4 unpack_| ow(1s32vecd A, 1s32vecd B);
| u32vecd unpack_ | ow(lu32vec4 A, 1u32vecd B);

RO = AO;
R1 = BO;
R2 = Al;
R3 = BI;

Corresponding intrinsic: _nm _unpackl o_epi 32

358

Intel® C++ Intrinsics Reference

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B.
| 32vec2 unpack | owm132vec2 A, |32vec2 B)

| s32vec2 unpack_| ow(ls32vec2 A, 1s32vec2 B);

lu32vec2 unpack_ | ow(lu32vec2 A, 1u32vec2 B)

RO = AO;
R1 = BO;

Corresponding intrinsic: _nm unpackl o_pi 32

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low
half of B.

| 16vec8 unpack | owm | 16vec8 A, |16vec8 B)
| si6vec8 unpack_| ow(lsl6vec8 A, |1sl6vec8 B);
lulévec8 unpack_| ow(lulévec8 A, lul6vec8 B);

RO = AO;
R1 = BO;
R2 = Al;
R3 = BI;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;

Corresponding intrinsic: _nm unpackl o_epi 16

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low
half of B.

| 16vec4 unpack | owm | 16vecd A, |16vecd B)
| si6vecd unpack_| ow(lsl6vecd A, |sl6vecd B);
lulévecd unpack_| ow(lulévecd A, lul6vecd B);

RO = AO;
R1 = BO;
R2 = Al;
R3 = BI;

Corresponding intrinsic: _nm _unpackl o_pi 16

359

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half
of B.

| 8Bvecl6 unpack | ow|18vecl6 A, 18vecl6 B);

| s8vecl1l6 unpack_| ow(ls8vecl6 A, |s8vecl6 B);
| u8vecl6 unpack | ow(lu8vecl6 A, |u8vecl6 B);
RO = AQ;

R1 = BO;

R2 = Al;

R3 = BI;

R4 = A2;

R5 = B2;

R6 = A3;

R7 = B3;

R8 = A4;

R9 = B4;

R10 = A5;

R11 = B5;

R12 = AG6;

R13 = B6;

R14 = A7;

R15 = B7;

Corresponding intrinsic: _nm _unpackl o_epi 8

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half
of B.

| 8vec8 unpack | ow(|I8vec8 A, [|8vec8 B);

| s8vec8 unpack | owm 1 s8vec8 A, |s8vec8 B);
| u8vec8 unpack | om |1 u8vec8 A, 1u8vec8 B);
RO = AO;

R1 = BO;

R2 = Al;

R3 = BI;

R4 = A2;

R5 = B2;

R6 = A3;

R7 = B3;

Corresponding intrinsic: _nm unpackl o_pi 8

Pack Operators

Pack the eight 32-bit values found in A and B into eight 16-bit values with signed saturation.

| sl6vec8 pack_sat (1 s32vec2 A, Is32vec2 B);
Corresponding intrinsic: _nmm _packs_epi 32

Pack the four 32-bit values found in A and B into eight 16-bit values with signed saturation.

| slévecd pack_sat (1 s32vec2 A, Is32vec2 B);
Corresponding intrinsic: _nmm _packs_pi 32

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with signed saturation.

| s8vecl6 pack_sat (I sl6vecd A, Isl6vecd B);
Corresponding intrinsic: _mm packs_epi 16

Pack the eight 16-bit values found in A and B into eight 8-bit values with signed saturation.

| s8vec8 pack_sat(lsl6vec4 A |Isl6vecd B);
Corresponding intrinsic: _nm _packs_pi 16

360

Intel® C++ Intrinsics Reference

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with unsigned saturation .

| u8vecl6 packu_sat(lsl6vecd A Isl6vecd B);
Corresponding intrinsic: _nm _packus_epi 16

Pack the eight 16-bit values found in A and B into eight 8-bit values with unsigned saturation.

| u8vec8 packu_sat (I s16vec4 A, Isl6vecd B);
Corresponding intrinsic: _nm _packs_pul6

Clear MMX(TM) Instructions State Operator

Empty the MMX(TM) registers and clear the MMX state. Read the guidelines for using the
EMMS instruction intrinsic.

void enmpty(void);
Corresponding intrinsic: _nm enpty

Integer Intrinsics for Streaming SIMD Extensions

</ Note
You must include f vec. h header file for the following functionality.

Compute the element-wise maximum of the respective signed integer words in A and B.

| sl6évecd sind_max(lsl6vecd A, |sl6vecd B);
Corresponding intrinsic: _nm _max_pi 16

Compute the element-wise minimum of the respective signed integer words in A and B.

| sl6vecd sind_m n(lsl6vecd A, 1sl6vecd B);
Corresponding intrinsic: _nm ni n_pi 16

Compute the element-wise maximum of the respective unsigned bytes in A and B.

| u8vec8 sinmd _max(luBvec8 A, |u8vec8 B);
Corresponding intrinsic: _mm_nmax_pu8

Compute the element-wise minimum of the respective unsigned bytes in A and B.

lu8vec8 simd_m n(luBvec8 A, |u8vec8 B);
Corresponding intrinsic: _mm_m n_pu8

Create an 8-bit mask from the most significant bits of the bytes in A.

i nt move_nmask(| 8vec8 A);
Corresponding intrinsic: _nm _novenask_pi 8

Conditionally store byte elements of A to address p. The high bit of each byte in the selector B
determines whether the corresponding byte in A will be stored.

voi d mask_move(l 8vec8 A, |18vec8 B, signed char *p);
Corresponding intrinsic: _nmm _masknmove_si 64

Store the data in A to the address p without polluting the caches. A can be any | vec type.

void store nta(__n64 *p, M64 A);
Corresponding intrinsic: _nm st r eam pi

Compute the element-wise average of the respective unsigned 8-bit integers in A and B.

| u8vec8 sinmd_avg(lu8vec8 A, |u8vec8 B);
Corresponding intrinsic: _mm avg_pu8

Compute the element-wise average of the respective unsigned 16-bit integers in A and B.

lulévecd sind_avg(lul6vecd A, lul6vecd B);
Corresponding intrinsic: _nmm _avg_pul6

361

Conversions Between Fvec and lvec

Convert the lower double-precision floating-point value of A to a 32-bit integer with truncation.

i nt F64vec2Tol nt (F64vecd2 A);
r := (int)AO0;

Convert the four floating-point values of A to two the two least significant double-precision
floating-point values.

F64vec2 F32vec4ToF64vec2(F32vecd A);

ro : = (doubl e) AO;

rl := (doubl e)A1;

Convert the two double-precision floating-point values of A to two single-precision floating-point
values.

F32vec4 F64vec2ToF32vecd(F64vec2 A);
10 := (float)A0;
rl := (float)Al;

Convert the signed i nt in B to a double-precision floating-point value and pass the upper double-
precision value from A through to the result.

F64vec2 I nttoF64vec2(F64vec2 A, int B);
ro := (doubl e)B;
ri = Al

Convert the lower floating-point value of A to a 32-bit integer with truncation.

i nt F32vec4Tol nt (F32vec4 A);
r .= (int)Ao0;

Convert the two lower floating-point values of A to two 32-bit integer with truncation, returning
the integers in packed form.

| s32vec2 F32vec4Tol s32vec2 (F32vec4 A);

ro := (int)A0;

ri := (int)AlL

Convert the 32-bit integer value B to a floating-point value; the upper three floating-point values
are passed through from A.

F32vec4 | nt ToF32vec4(F32vecd4 A, int B);

ro := (float)B;

ri = Al

r2 := A2,

r3 := A3;

Convert the two 32-bit integer values in packed form in B to two floating-point values; the upper
two floating-point values are passed through from A.

F32vec4 |s32vec2ToF32vec4(F32vecd4 A, 1s32vec2 B);

ro := (float)BO;
ri := (float)B1;
r2 := ;
r3 := A3

362

Intel® C++ Intrinsics Reference

Floating-point Vector Classes

The floating-point vector classes, F64vec?2, F32vec4, and F32vec1, provide an interface to
SIMD operations. The class specifications are as follows:

F64vec2 A(doubl e x, double y);
F32vec4 A(float z, float y, float x, float w);
F32vecl B(fl oat w);

The packed floating-point input values are represented with the right-most value lowest as shown
in the following table.

Single-Precision Floating-point Elements

High Yalue A3 AD Al AD Low Value
Operands .I f : :
B3 B2 B1 BO
T T T T
Operations |:
Return [RS* R2 \ R1 Y RO '
127 63 m JN[;}
|
128 hits F32vecd (R0, R1, B2, and R3)

F32vecd returns four packed single-precision floating point values (RO, R1, R2, and R3).
F32wec2 returns one single-precision floating point value (RO,

Fvec Notation Conventions
This reference uses the following conventions for syntax and return values.
Fvec Classes Syntax Notation
Fvec classes use the syntax conventions shown the following examples:
[Fvec_C ass] R = [Fvec_Cl ass] A [operator][lvec_O ass] B;
Examplel: F64vec2 R = F64vec2 A & F64vec2 B;
[Fvec_C ass] R = [operator] ([Fvec_C ass] A [Fvec_C ass] B);
Example2: F64vec2 R = andnot (F64vec2 A, F64vec2 B);
[Fvec_C ass] R [operator]= [Fvec_C ass] A
Example 3: F64vec2 R &= F64vec2 A
where
[operat or] is an operator (for example, &, |, or)
[Fvec_d ass] isany Fvec class (F64vec2, F32vec4, or F32vecl)
R, A, B are declared Fvec variables of the type indicated

363

Return Value Notation

Because the Fvec classes have packed elements, the return values typically follow the
conventions presented in the Return Value Convention Notation Mappings table below. F32vec4
returns four single-precision, floating-point values (RO, R1, R2, and R3); F64vec2 returns two
double-precision, floating-point values, and F32vec1 returns the lowest single-precision
floating-point value (RO).

Return Value Convention Notation Mappings

Example 1: Example 2: Example F32vec4 | F64vec2 | F32vecl
3:

RO := A0 & RO : = A0 andnot RO &= X X X

BO; BO; AO;

RlL := Al & R1 : = Al andnot Rl &= X X N/A

B1; B1; Al;

R2 .= A2 & R2 := A2 andnot |R2 &= X N/A N/A

B2; B2; A2;

R3 := A3 & R3 := A3 andhot |R3 &= X N/A N/A

B3 B3; A3;

Data Alignment

Memory operations using the Streaming SIMD Extensions should be performed on 16-byte-
aligned data whenever possible.

F32vec4 and F64vec?2 object variables are properly aligned by default. Note that floating point
arrays are not automatically aligned. To get 16-byte alignment, you can use the alignment
__decl spec:

__declspec(align(16)) float A 4];
Conversions

All Fvec object variables can be implicitly converted to __mlL28 data types. For example, the
results of computations performed on F32vec4 or F32vec1 object variables can be assigned to
___mL28 data types.

_ nml28d mMmm= A & B; /* where A B are F64vec2 object variables */
_ nml28 mm= A & B; /* where A B are F32vec4 object variables */
_ nm28 mm= A & B; /* where A B are F32vecl object variables */

364

Intel® C++ Intrinsics Reference

Constructors and Initialization

The following table shows how to create and initialize F32vec objects with the Fvec classes.

Constructors and Initialization for Fvec Classes

Example Intrinsic Returns

Constructor Declaration

F64vec2 A; N/A N/A
F32vec4 B;
F32vecl C;

__m128 Object Initialization

F64vec2 A(__nml28d mm; N/A N/A
F32vec4 B(__ ml28 mj;
F32vecl C(__ nml28 m);

Double Initialization

/* Initializes two doubles. */ _mm set_pd A0 :=do;
F64vec2 A(doubl e dO, double dl); Al :=dl:
F64vec2 A = F64vec2(doubl e dO, double ’
di);

F64vec2 A(double dO); _mmsetl pd A0 :=d0;
/* Initializes both return val ues Al == do;

with the sane doubl e precision value */.

Float Initialization

F32vec4 A(float f3, float f2, _nmm set _ps A0 = f0;
float f1, float fO); Al ==fl;
F32vecd4 A = F32vec4(float f3, float f2, A2 =
float f1, float fO); A3. f3f
F32vec4 A(float fO0); _mmsetl ps A0 = f0;
/* Initializes all return val ues Al == f0;
with the same floating point value. */ A2 = f0:

A3 =10,
F32vec4 A(doubl e dO); _mmset1l_ps(d) | A0 :=do0;
/* Initialize all return values wth Al = do;
t he sane doubl e-precision value. */ A2 = dO:

A3 :=d0;
F32vecl A(doubl e dO); _mmset_ss(d) | A0:=do;
/* Initializes the | owest value of A Al ==0;
with dO and the other values with 0.*/ A2 =0:

A3 :=0;

365

F32vecl B(fl oat fO0); _nmm set _ss BO := f0;
/* Initializes the | owest value of B Bl :=0;
with fO and the other values with 0.*/ B2 :=0:
B3 :=0;
F32vecl B(int 1); _nmm cvtsi 32_ss | B0 = f0;
/* Initializes the | owest value of B Bl :={}
with f0, other val ues are undefined. */ B2 =
B3 :={}

Arithmetic Operators

The following table lists the arithmetic operators of the Fvec classes and generic syntax. The
operators have been divided into standard and advanced operations, which are described in more
detail later in this section.

Fvec Arithmetic Operators

Category | Operation Operators | Generic Syntax
Standard Addition + R=A+ B;
+= R += A
Subtraction - R=A- B
-= R-=A
Multiplication * R=A* B
* = R *= A
Division / R=A/ B
/= R/=A
Advanced | Square Root sqrt R = sqrt(A);
Reciprocal rep R =rcp(A);
(Newton-Raphson) rcp_nr R = rcp_nr(A);
Reciprocal Square Root | r'sqrt R =rsqrt(A);
(Newton-Raphson) rsgrt_nr |R = rsqrt_nr(A);

366

Intel® C++ Intrinsics Reference

Standard Arithmetic Operator Usage

The following two tables show the return values for each class of the standard arithmetic
operators, which use the syntax styles described earlier in the Return Value Notation section.

Standard Arithmetic Return Value Mapping

R A | Operators |B | F32vec4 | F64vec2 | F32vecl

RO:=|AO0 |+ |- |* |/ |BO

Rl:=|Al |+ |- |* |/ |Bl N/A
R2:=|A2 [+ |- |* |/ |B2 N/A N/A
R3:=|A3 |+ |- |* |/ |B3 N/A N/A

Arithmetic with Assignment Return Value Mapping

R Operators A | F32vec4 | F64vec2 | F32vecl
RO:=|+=|-=|*=|/=|A0

Rl:=|+=|-=|*=|/= AL N/A
R2:=|+=|-=|*=|/=| A2 N/A N/A
R3:=|+=|-=|*=|/=|A3 N/A N/A

The table below lists standard arithmetic operator syntax and intrinsics.

Standard Arithmetic Operations for Fvec Classes

Operation Returns | Example Syntax Usage Intrinsic
Addition 4 floats F32vec4 R = F32vec4 A + F32vec4 _mm add_ps
B;
F32vec4 R += F32vec4 A
2 F64vec2 R = F64vec2 A + F32vec?2 _mm add_pd
doubles | B;
F64vec2 R += F64vec2 A
1 float F32vecl R = F32vecl A + F32vecl _nmm add_ss
B;
F32vecl R += F32vecl A
Subtraction 4 floats F32vec4 R = F32vec4 A - F32vec4d _mm sub_ps
B;
F32vec4 R -= F32vecd A

367

Operation Returns | Example Syntax Usage Intrinsic
2 F64vec2 R - F64vec2 A + F32vec?2 _mm sub_pd
doubles | B
F64vec2 R -= F64vec2 A
1 float F32vecl R = F32vecl A - F32vecl _mm sub_ss
B;
F32vecl R -= F32vecl A
Multiplication | 4 floats F32vec4 R = F32vec4 A * F32vec4 _mm rmul _ps
B;
F32vec4 R *= F32vecd A
2 F64vec2 R = F64vec2 A * F364vec2 | _mmnul pd
doubles | B;
F64vec2 R *= F64vec2 A
1 float F32vecl R = F32vecl A * F32vecl _mm nul _ss
B;
F32vecl R *= F32vecl A
Division 4 floats | F32vec4 R = F32vec4 A/ F32vec4 _mm.di v_ps
B;
F32vec4 R /= F32vec4 A
2 F64vec2 R = F64vec2 A/ F64vec?2 _mmdiv_pd
doubles | B
F64vec2 R /= F64vec2 A
1 float F32vecl R = F32vecl A/ F32vecl _mmdiv_ss
B;
F32vecl R /= F32vecl A

Advanced Arithmetic Operator Usage

The following table shows the return values classes of the advanced arithmetic operators, which
use the syntax styles described earlier in the Return Value Notation section.

Advanced Arithmetic Return Value Mapping

R Operators A | F32vec4 | F64vec?2 | F32vecl
RO:= [sqrt rcp |rsqrt [rcp_nr |[rsqgrt_nr | A0
Rl:=[sqrt rcp |rsqrt |rcp_nr |[rsqgrt_nr | Al N/A
R2:=[sqrt rcp |(rsqrt |rcp_nr |[rsqgrt_nr | A2 N/A N/A
R3:=[sqgrt rcp |rsqrt |rcp_nr |[rsqgrt_nr | A3 N/A N/A
f:= | add horizontal (A0 + N/A N/A
Al + A2
+ A3)

368

Intel® C++ Intrinsics Reference

R Operators F32vec4 | F64vec2 | F32vecl
d:= | add_horizontal (A0 + N/A N/A
Al)
The table below shows examples for advanced arithmetic operators.
Advanced Arithmetic Operations for Fvec Classes
Returns | Example Syntax Usage Intrinsic

Square Root

4 floats F32vec4 R = sqrt(F32vecd4 A); _mmsqrt_ps
2 doubles | F64vec2 R = sqrt (F64vec2 A); _mmsqrt_pd
1 float F32vecl R = sqrt(F32vecl A); _mmsqrt_ss
Reciprocal

4 floats F32vec4 R = rcp(F32vecd A); _mmrcp_ps
2 doubles | F64vec2 R = rcp(F64vec2 A); _mmrcp_pd
1 float F32vecl R = rcp(F32vecl A); _mmrcp_ss

Reciprocal Square Root

4 floats |F32vec4 R = rsqrt(F32vecd A); _mmrsqrt_ps
2 doubles | F64vec2 R = rsqrt (F64vec2 A); _mmrsqgrt_pd
1 float F32vecl R = rsqgrt(F32vecl A); _mmrsqrt_ss

Reciprocal Newton Raphson

4 floats F32vec4

R

rcp_nr(F32vecd A);

_mm sub_ps
_mm add_ps
_mm mul _ps
_mmrcp_ps

2 doubles | F64vec?2

R

rcp_nr(F64vec2 A);

_mm sub_pd
_mm add_pd
_mm mul _pd
_mmrcp_pd

1 float F32vecl

R

rcp_nr(F32vecl A);

_mm sub_ss
_mm add_ss
_mm mul _ss

369

_mmrcp_ss

Reciprocal Square Root Newton Raphson

4 float F32vec4 R

rsqrt_nr(F32vec4 A); _mm sub_pd
_mm mul _pd
_mmrsqrt_ps

rsqrt_nr(F64vec2 A); _mm sub_pd
_mm nul _pd
_mmrsqgrt_pd

2 doubles | F64vec2 R

1 float F32vecl R

rsqrt_nr(F32vecl A); _mm sub_ss
_mm mul _ss
_mmrsqgrt_ss

Horizontal Add

1 float float f add_hori zont al (F32vec4 A); nmm add_ss

“mmshuffle_ss

1 double |double d = add_hori zontal (F64vec2 A); | _mm add_sd
“mm shuffle_sd

Minimum and Maximum Operators
Compute the minimums of the two double precision floating-point values of A and B.

F64vec2 R = sind_m n(F64vec2 A, F64vec2 B)
RO : = m n(A0, BO);

R1 := min(Al, Bl);

Corresponding intrinsic: _nm_mi n_pd

Compute the minimums of the four single precision floating-point values of A and B.
F32vec4 R = simd_m n(F32vec4 A, F32vec4 B)

RO : = m n(A0, BO);
RL := m n(Al, Bl);
R2 = m'n(A2,BZ);
R3 := mi n(A3, B3);

Corresponding intrinsic: _nmm_m n_ps
Compute the minimum of the lowest single precision floating-point values of A and B.

F32vecl R = sind_m n(F32vecl A, F32vecl B)
RO : = m n(A0, BO);
Corresponding intrinsic: _mm _m n_ss

Compute the maximums of the two double precision floating-point values of A and B.

F64vec2 sind_nmax(F64vec2 A, F64vec2 B)
RO : = max(A0, BO);

R1 : = max(Al, Bl);

Corresponding intrinsic: _nmm_max_pd

370

Intel® C++ Intrinsics Reference

Compute the maximums of the four single precision floating-point values of A and B.
F32vec4 R = sind_man(F32vec4 A, F32vec4 B)

RO : = max(A0, BO);
R1 := max(Al, Bl);
R2 : = max(A2, B2);
R3 : = max(A3, B3);

Corresponding intrinsic: _mm_nmax_ps
Compute the maximum of the lowest single precision floating-point values of A and B.

F32vecl sind_nmax(F32vecl A, F32vecl B)
RO : = max(A0, BO);
Corresponding intrinsic: _mm _nmax_ss

Logical Operators

The table below lists the logical operators of the Fvec classes and generic syntax. The logical
operators for F32vec1 classes use only the lower 32 bits.

Fvec Logical Operators Return Value Mapping

Bitwise Operation | Operators | Generic Syntax
AND & R=AZ&B;
&= R & A
OoR | R=A]| B
| = RI=A
XOR A R=A"B;
A= R N= A;
andnot andnot R = andnot (A);

The following table lists standard logical operators syntax and corresponding intrinsics. Note that
there is no corresponding scalar intrinsic for the F32vec1 classes, which accesses the lower 32
bits of the packed vector intrinsics.

Logical Operations for Fvec Classes

Operation | Returns | Example Syntax Usage Intrinsic
AND 4 floats F32vec4 & = F32vec4 A & F32vec4 |_mm and_ps
B
F32vec4 & &= F32vecd A
2 F64vec2 R = F64vec2 A & F32vec2 | _mm and_pd
doubles | B;

F64vec2 R & F64vec2 A

1 float F32vecl R = F32vecl A & F32vecl |_mm and_ps
B
F32vecl R & F32vecl A

371

Operation | Returns | Example Syntax Usage Intrinsic

R 4 floats F32vec4 R = F32vec4 A | F32vec4 |_nmor_ps
B
F32vec4 R | = F32vec4 A
2 F64vec2 R = F64vec2 A | F32vec2 | _mmor_pd
doubles | B
F64vec2 R | = F64vec2 A

1 float F32vecl R

F32vecl A | F32vecl mm or _ps

B
F32vecl R | = F32vecl A

XOR 4 floats | F32vec4 R = F32vec4 A ™~ F32vec4 |_nm xor_ps
B.

>

F32vec4 R A= F32vec4d A

2 F64vec2 R = F64vec2 A " _mm xor _pd
doubles | F364vec2 B;
F64vec2 R "= F64vec2 A

F32vecl A ~ F32vecl |_nm xor_ps

1 float F32vecl R
B
F32vecl R "= F32vecl A

ANDNOT 2 F64vec2 R = andnot (F64vec2 A, _mm andnot _pd
doubles | F64vec2 B);

Compare Operators

The operators described in this section compare the single precision floating-point values of A and
B. Comparison between objects of any Fvec class return the same class being compared.

The following table lists the compare operators for the Fvec classes.

Compare Operators and Corresponding Intrinsics

Compare For: Operators | Syntax

Equality cnpeq R = cnpeq(A, B)
Inequality cnpneq R = cnpneq(A, B)
Greater Than cnpgt R = cnpgt (A, B)
Greater Than or Equal To cnpge R = cnpge(A, B)
Not Greater Than cnpngt R = cnpngt (A, B)
Not Greater Than or Equal To | chpnge R = cnmpnge(A, B)

372

Intel® C++ Intrinsics Reference

Compare For: Operators | Syntax

Less Than cnpl t R = cnplt(A B)
Less Than or Equal To cnpl e R = cnpl e(A, B)
Not Less Than crpnl t R = cnpnlt (A, B)
Not Less Than or Equal To cnpnl e R = cmpnl e(A, B)

Compare Operators

The mask is set to Oxf f f f f f f f for each floating-point value where the comparison is true and
0x00000000 where the comparison is false. The table below shows the return values for each
class of the compare operators, which use the syntax described earlier in the Return Value

Notation section.

Compare Operator Return Value Mapping

R AO | For Any

Operators

B

If True

If False

F32vec4

F64vec?2

F32vecl

cnp[eq
| It]
le | gt
| ge]
chp[ne
| nlt |
nle |
ngt |
nge]

RO:= | (Al

I(Al

Bl)
Bl)

Oxffffffff

0x0000000

R1:=| (Al |cnp[eq
UNRIBA!
le | gt
| ge]
cnp[ne
| nlt |
nle |
ngt |
nge]

B2)
B2)

OXffffffff

0x0000000

N/A

(Al [cnp[eq
NI
le | gt
| ge]
cnp[ne
| nlt |
nle |
ngt |
nge]

B3)
B3)

Oxffffffff

0x0000000

N/A

N/A

373

AO

For Any
Operators

B If True

If False

F32vec4

F64vec?2

F32vecl

R3:= | A3

cnpl eq
| It]
le | gt
| ge]
cnp[ne
| nit |
nle |
ngt |
nge]

B3) |Oxffffffff

B3)

0x0000000

N/A

N/A

The table below shows examples for arithmetic operators and intrinsics.

Compare Operations for Fvec Classes

Returns | Example Syntax Usage Intrinsic
Compare for Equality

4 floats | F32vec4 R = cnpeq(F32vec4 A); |_mm.cnpeq_ps
2 doubles | F64vec2 R = cnpeq(F64vec2 A); _mm cnpeq_pd
1 float F32vecl R = cnpeq(F32vecl A); _mm cnpeq_ss
Compare for Inequality

4 floats F32vec4 R = cnpneq(F32vec4 A); | _mm cnhpned_ps
2 doubles | F64vec2 R = cnpneq(F64vec2 A); | _nmm cnpneq_pd
1 float F32vecl R = cnpneq(F32vecl A); | _nmm cnpneq_ss
Compare for Less Than

4 floats | F32vec4 R = cnplt (F32vec4 A); |_mmecnplt_ps
2 doubles | F64vec2 R = cnplt (F64vec2 A); _mmecnplt_pd
1 float F32vecl R = cnpl t (F32vecl A); |_mmecnplt_ss
Compare for Less Than or Equal

4 floats F32vec4 R = cnpl e(F32vec4 A); _mm cnpl e_ps
2 doubles | F64vec2 R = cnpl e(F64vec2 A); _mm cnpl e_pd

374

Intel® C++ Intrinsics Reference

1 float F32vecl R = cnpl e(F32vecl A); |_mmcnpl e_pd
Compare for Greater Than

4 floats | F32vec4 R = cnpgt (F32vec4 A); |_mm.cnpgt_ps
2 doubles | F64vec2 R = cnpgt (F32vec42 A); | _nm cnpgt _pd
1 float F32vecl R = cnpgt (F32vecl A); _mm cnpgt _ss
Compare for Greater Than or Equal To

4 floats F32vec4 R = cnpge(F32vec4d A); _mm cnpge_ps
2 doubles | F64vec2 R = cnpge(F64vec2 A); _mm cnpge_pd
1 float F32vecl R = cnpge(F32vecl A); _mm cnpge_ss

Compare for Not Less Than

4 floats F32vec4 R = cnpnlt(F32vecd4 A); | _mmcnpnlt_ps
2 doubles | F64vec2 R = cnpnl t (F64vec2 A); | _mmcnpnlt _pd
1 float F32vecl R = cnpnlt (F32vecl A); |_nmcnpnlt_ss
Compare for Not Less Than or Equal

4 floats | F32vec4 R = cnpnl e(F32vec4 A); | _mm cnpnl e_ps
2 doubles | F64vec2 R = cnpnl e(F64vec2 A); | _mmcnpnl e_pd
1 float F32vecl R = cnpnl e(F32vecl A); | _mm cnpnl e_ss
Compare for Not Greater Than

4 floats F32vec4 R = cnpngt (F32vec4 A); | _mm cnhpngt_ps
2 doubles | F64vec2 R = cnpngt (F64vec2 A); | _nmm cnpngt pd
1 float F32vecl R = cnpngt(F32vecl A); | _mm cnhpngt_ss
Compare for Not Greater Than or Equal

4 floats | F32vec4 R = cnpnge(F32vec4 A); | _mm cnpnge_ps
2 doubles | F64vec2 R = cnpnge(F64vec2 A); | _nmm cnpnge_pd

375

F32vecl R = cnpnge(F32vecl A);

1 float _nmm . cnpnge_ss

Conditional Select Operators for Fvec Classes

Each conditional function compares single-precision floating-point values of A and B. The C and
D parameters are used for return value. Comparison between objects of any Fvec class returns the
same class.

Conditional Select Operators for Fvec Classes

Conditional Select for: Operators Syntax

Equality select_eq |[R = select_eq(A B)
Inequality sel ect _neq |R = sel ect_neq(A, B)
Greater Than select_gt |[R = select_gt(A B)
Greater Than or Equal To select_ge |R = select_ge(A B)
Not Greater Than select_gt |[R = select_gt(A B)
Not Greater Than or Equal To | Sel ect _ge |R = sel ect_ge(A, B)
Less Than select _It |[R = select_It(A B)
Less Than or Equal To select _le |R = select_le(A B)
Not Less Than select_nlt |R = select_nlt(A B)
Not Less Than or Equal To select_nle |R = select_nle(A B)

Conditional Select Operator Usage

For conditional select operators, the return value is stored in C if the comparison is true or in D if
false. The following table shows the return values for each class of the conditional select
operators, using the Return Value Notation described earlier.

Compare Operator Return Value Mapping

R AO | Operators B |C |D |F32vec4 | F64vec2 | F32vecl
RO:= | (Al |select_[eq | It | B0) | CO | DO | X X X
a1|le | gt | ge] B0) | CO | DO
select _[ne | nlt |
nle | ngt | nge]
Rl:=|[(A2 |select_[eq | It | Bl) | Cl | D1 |X X N/A
a2 le | gt | ge] Bl) | Cl | DI
select [ne | nlt |
nle | ngt | nge]

376

Intel® C++ Intrinsics Reference

R AO | Operators B |C |D |F32vec4 | F64vec2 | F32vecl
R2:= | (A2 |select [eq | It | B2) C2 /D2 |X N/A N/A
a2 (le | gt | ge] B2) | C2 | D2

select [ne | nlt |
nle | ngt | nge]

R3:=| (A3 |select_[eq | It | B3) |C3 | D3 | X N/A N/A

a3 |le | gt | ge] B3) | C3 | D3
select [ne | nlt |

nle | ngt | nge]

The following table shows examples for conditional select operations and corresponding
intrinsics.

Conditional Select Operations for Fvec Classes

Returns | Example Syntax Usage Intrinsic

Compare for Equality

4 floats F32vec4 R = sel ect _eq(F32vecd4 A); _mm cnpeq_ps
2 doubles | F64vec2 R = sel ect _eq(F64vec2 A); |_mmcnpeqg_pd
1 float F32vecl R = sel ect _eq(F32vecl A); _mm cnpeq_ss

Compare for Inequality

4 floats | F32vec4 R = sel ect_neq(F32vec4 A); | _mm cnpneq_ps

2 doubles | F64vec2 R = sel ect _neq(F64vec2 A); | _mm cnpneqg_pd

1 float F32vecl R = sel ect _neq(F32vecl A); |_mm cnpneq_ss
Compare for Less Than

4 floats | F32vec4 R = select_|t(F32vec4 A); |_mmecnplt_ps
2 doubles | F64vec2 R = sel ect |t (F64vec2 A); _mmecnplt_pd
1 float F32vecl R = select_It(F32vecl A); _mmecnplt_ss

Compare for Less Than or Equal

4 floats F32vec4 R = sel ect_| e(F32vecd4 A); _mm cnpl e_ps

2 doubles | F64vec2 R = sel ect_| e(F64vec2 A); |_mmcnple_pd

377

1 float F32vecl R = select_l e(F32vecl A); |_mmcnpl e_ps
Compare for Greater Than

4 floats |F32vec4 R = sel ect_gt(F32vecd4 A); |_nmmcnpgt_ps
2 doubles | F64vec2 R = sel ect_gt (F64vec2 A); |_mm cnpgt_pd
1 float F32vecl R = select_gt(F32vecl A); |_nmm.cnpgt_ss
Compare for Greater Than or Equal To

4 floats F32vecl R = sel ect _ge(F32vec4 A); _mm cnpge_ps
2 doubles | F64vec2 R = sel ect _ge(F64vec2 A); |_mmcnpge_pd
1 float F32vecl R = sel ect _ge(F32vecl A); _mm cnpge_ss
Compare for Not Less Than

4 floats F32vecl R = select_nlt(F32vec4 A); | _nmmcnmpnlt_ps
2 doubles | F64vec2 R = select _nlt(F64vec2 A); | _mmcnpnlt_pd
1 float F32vecl R = select_nlt(F32vecl A); |_nmmcnpnlt_ss
Compare for Not Less Than or Equal

4 floats | F32vecl R = sel ect_nle(F32vec4 A); |_mmcnpnl e_ps
2 doubles | F64vec2 R = sel ect _nl e(F64vec2 A); | _mm cnpnl e_pd
1 float F32vecl R = sel ect_nl e(F32vecl A); | _nmcmpnl e_ss
Compare for Not Greater Than

4 floats F32vecl R = sel ect _ngt (F32vec4 A); | _nm cnpngt _ps
2 doubles | F64vec2 R = sel ect _ngt (F64vec2 A); | _mm cnpngt pd
1 float F32vecl R = sel ect_ngt (F32vecl A); | _nm cnpngt _ss
Compare for Not Greater Than or Equal

4 floats | F32vecl R = sel ect_nge(F32vec4 A); | _mm cnpnge_ps
2 doubles | F64vec2 R = sel ect _nge(F64vec2 A); |_mm cnpnge_pd

378

Intel® C++ Intrinsics Reference

1 float F32vecl R = sel ect _nge(F32vecl A); |_mm cnpnge_ss

Cacheability Support Operations

Stores (non-temporal) the two double-precision, floating-point values of A. Requires a 16-byte
aligned address.

void store_nta(double *p, F64vec2 A);
Corresponding intrinsic: _nm st r eam pd

Stores (non-temporal) the four single-precision, floating-point values of A. Requires a 16-byte
aligned address.
void store nta(float *p, F32vecd4 A);
Corresponding intrinsic: _nmm St r eam ps
Debugging

The debug operations do not map to any compiler intrinsics for MMX(TM) technology or
Streaming SIMD Extensions. They are provided for debugging programs only. Use of these
operations may result in loss of performance, so you should not use them outside of debugging.

Output Operations
The two single, double-precision floating-point values of A are placed in the output buffer and

printed in decimal format as follows:

cout << F64vec2 A
"[1]: A1 [0]: AO"
Corresponding intrinsics: none

The four, single-precision floating-point values of A are placed in the output buffer and printed in
decimal format as follows:

cout << F32vec4d A
"[3]:A3 [2]:A2 [1]: Al [O]: AO"
Corresponding intrinsics: none

The lowest, single-precision floating-point value of A is placed in the output buffer and printed.

cout << F32vecl A
Corresponding intrinsics: none

Element Access Operations
double d = F64vec2 Alint i]

Read one of the two, double-precision floating-point values of A without modifying the
corresponding floating-point value. Permitted values of i are 0 and 1. For example:

If DEBUG is enabled and i is not one of the permitted values (0 or 1), a diagnostic message is
printed and the program aborts.

double d = F64vec2 Al 1];
Corresponding intrinsics: none

Read one of the four, single-precision floating-point values of A without modifying the
corresponding floating point value. Permitted values of i are 0, 1, 2, and 3. For example:

float f = F32vec4 Alint i]

If DEBUG is enabled and i is not one of the permitted values (0-3), a diagnostic message is
printed and the program aborts.

float f = F32vecd4 Al 2];
Corresponding intrinsics: none

379

Element Assignment Operations

Load

F64vecd4 Alint i] = double d;

Modify one of the two, double-precision floating-point values of A. Permitted values of i nt i
are 0 and 1. For example:

F32vec4 Al 1] = double d;
F32vec4 Alint i] = float f;

Modify one of the four, single-precision floating-point values of A. Permitted values of i nt i are
0, 1, 2, and 3. For example:

If DEBUG is enabled and i nt i is not one of the permitted values (0-3), a diagnostic message is
printed and the program aborts.

F32vec4 Al 3] = float f;
Corresponding intrinsics: none.

and Store Operators

Loads two, double-precision floating-point values, copying them into the two, floating-point
values of A. No assumption is made for alignment.

voi d | oadu(F64vec2 A, doubl e *p)
Corresponding intrinsic: _nm | oadu_pd

Stores the two, doubl e-precision floating-point values of A No
assunption is made for alignnent.

void storeu(float *p, F64vec2 A);
Corresponding intrinsic: _nm st or eu_pd

Loads four, single-precision floating-point values, copying them
into the four floating-point values of A No assunption is made
for alignnent.

voi d | oadu(F32vec4 A, double *p)
Corresponding intrinsic: _nm | oadu_ps

Stores the four, single-precision floating-point values of A No
assunption is made for alignnent.

void storeu(float *p, F32vecd4 A);
Corresponding intrinsic: _nm_St or eu_ps

Unpack Operators for Fvec Operators

Selects and interleaves the lower, double-precision floating-point values from A and B.

F64vec2 R = unpack_| om F64vec2 A, F64vec2 B);
Corresponding intrinsic: _mm unpackl o_pd(a, b)

Selects and interleaves the higher, double-precision floating-point values from A and B.

F64vec2 R = unpack_hi gh(F64vec2 A, F64vec2 B)
Corresponding intrinsic: _nm unpackhi _pd(a, b)

Selects and interleaves the lower two, single-precision floating-point values from A and B.

F32vec4 R = unpack_| om F32vec4 A, F32vec4 B)
Corresponding intrinsic: _mm unpackl o_ps(a, b)

Selects and interleaves the higher two, single-precision floating-point values from A and B.

F32vec4 R = unpack_hi gh(F32vec4 A, F32vec4 B)
Corresponding intrinsic: _nmm unpackhi _ps(a, b)

380

Intel® C++ Intrinsics Reference

Move Mask Operator

Creates a 2-bit mask from the most significant bits of the two, double-precision floating-point
values of A, as follows:

int i = nove_nask(F64vec2 A)
i 1= sign(al)<<l | sign(a0)<<0
Corresponding intrinsic: _nm _novenmask_pd

Creates a 4-bit mask from the most significant bits of the four, single-precision floating-point
values of A, as follows:

int i = nove_nask(F32vec4 A)
i 1= sign(a3)<<3 | sign(a2)<<2 |
Corresponding intrinsic: _nm _novenask_ps

sign(al) <<l | sign(a0)<<0

Classes Quick Reference

This appendix contains tables listing the class, functionality, and corresponding intrinsics for each
class in the Intel® C++ Class Libraries for SIMD Operations. The following table lists all Intel

C++ Compiler intrinsics that are not implemented in the C++ SIMD classes.

Logical Operators: Corresponding Intrinsics and Classes

Operators | Corresponding 1128vecl, | 164vec, | F64vec2 | F32vec4 | F32vecl
Intrinsic I64vec2, |I32vec,
I32vec4, |I16vec,
I16vec8, |I8vec8
I8vecl6
&, &= _mm and_[x] si 128 si 64 pd ps ps
L, = _mmor _[X] si 128 si 64 pd ps ps
A A= _mm xor _[X] si 128 si 64 pd ps ps
Andnot _mm andnot _[x] |si 128 si 64 pd N/A N/A
Arithmetic: Corresponding Intrinsics and Classes, Part 1
Operators | Corresponding | 164vec2 |132vec4 |116vec8 | I18vecl6
Intrinsic
+, += _mm add_[x] epi 64 |epi32 |epil6 |epi8
-, = _mm sub_[x] epi 64 |epi32 |epil6 |epi8
* k= _mmmullo [x] |N/A N/A epi 16 |[N/A
1= _mmdiv_[x] N/A N/A N/A N/A
mul _high [_mmmul hi _[x] |N/A N/A epi 16 |[N/A
mul _add | _mmmadd_[x] |N/A N/A epi 16 | N/A

381

Operators | Corresponding | 164vec2 |132vec4 |116vec8 | I8vecl6
Intrinsic
sqrt mm sqrt _[x] N/A N/A N/A N/A
rcp mm rcp_|[X] N/A N/A N/A N/A
rcp_nr _mmrcp_[x] N/A N/A N/A N/A
—mm add_[x]
mm sub[x]
_mm rmul _[x]
rsgrt mmrsqrt_[x] | N/A N/A N/A N/A
rsgrt_nr [_mmrsqrt _[x] |N/A N/A N/A N/A
mm sub[x]
_mm mul [x]

Arithmetic: Corresponding Intrinsics and Classes, Part 2

Operators | Corresponding |132vec?2 | I16vec4 | 18vec8 | F64vec2 | F32vec4 | F32vecl
Intrinsic
+, += _mm add_[x] pi 32 pi 16 pi 8 pd ps Ss
-, = _mm sub_[x] pi 32 pi 16 pi 8 pd ps Ss
* k= _mmmullo_[x] |N/A pi 16 |N/A pd ps Ss
/= _mmdiv_[x] |NA N/A N/A |pd ps ss
mul _high|_mm mul hi _[x] [N/A pi 16 N/A N/A N/A N/A
mul _add |_nmm madd_[x] [N/A pi 16 N/A N/A N/A N/A
sqrt _mmsqgrt_[x] |N/A N/A N/A pd ps Ss
rep _mmrcp_[x] |N/A N/A N/A |pd ps ss
rcp_nr _mmrcp_[x] N/A N/A N/A pd ps Ss
mm add|[x]
mm sub[x]
_mm mul _[x]
rsqrt _mmrsqrt_[x] |N/A N/A N/A |pd ps Ss
rsgrt_nr | _nmmrsqrt_[x] [N/A N/A N/A pd ps Ss
mm sub[x]
_mm mul _[x]

382

Intel® C++ Intrinsics Reference

Shift Operators: Corresponding Intrinsics and Classes, Part 1

Operators | Corresponding | 1128vecl | I64vec?2 | 132vec4 | I116vec8 | I8vecl6
Intrinsic

>> >>= _mmsrl_[x] N/A epi 64 |epi32 |epil6 |N/A
mmsrli[x] | Nn/A epi 64 |epi32 |epil6 |n/A
_mmsra__[X] | n/A N/A epi 32 | epi 16 | \/aA
_mmsrai _[X] N/A N/A epi 32 |epi 16 N/A

<<, <<= _mm sl | [x] N/A epi 64 |epi32 |epil6 |N/A
mmsli[x] | N/A epi 64 |epi32 |epil6 |n/A

Shift Operators: Corresponding Intrinsics and Classes, Part 2

Operators | Corresponding | I64vecl [132vec?2 | I16vec4 | I8vec8
Intrinsic

>> >>= _mmsrl _[x] |si64 pi 32 pi 16 N/A
_mmsrli _[x] |si64 pi 32 pi 16 N/A
_mmsra__[X] [N/A pi 32 pi 16 N/A
_mmsrai _[x] |N/A pi 32 pi 16 N/A

<<, <<= _mm sl | [x] si 64 pi 32 pi 16 N/A
“mmslli_[x] |si64 pi 32 pi 16 N/A

383

Comparison Operators: Corresponding Intrinsics and Classes, Part 1

Operators | Corresponding I32vec4 | 116vec8 | I18vecl6 | 132vec?2 | I116vecd | 18vec8
Intrinsic
cnpeq _mm cnpeq_|[X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
cnpneq _mm cnpeq_|[X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
_mm andnot _[y]* |si 128 |[si 128 |[si 128 |[sib64 si 64 si 64
cnpgt _mm cnpgt _[X] epi 32 |epil6 |[epi8 pi 32 pi 16 pi 8
cnpge _mm cnpge_|[X] epi 32 |epil6 |[epi8 pi 32 pi 16 pi 8
_mm andnot _[y]* |si 128 |[si 128 |[si 128 |[sib64 si 64 si 64
cnpl t _mmecenplt_[X] epi 32 |epil6 |[epi8 pi 32 pi 16 pi 8
crmpl e _mm cnpl e_[X] epi 32 |epil6 |[epi8 pi 32 pi 16 pi 8
_mm andnot _[y]* |si 128 |[si 128 |[si 128 |[sib64 si 64 si 64
cnpngt _mm cnpngt _[x] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
cnpnge _mmcnpnge_[X] | N/A N/A N/A N/A N/A N/A
cmpnl t _mmcnpnlt_[x] N/A N/A N/A N/A N/A N/A
cnpnl e _mmecnpnle_[xX] | N/A N/A N/A N/A N/A N/A

* Note that _nm andnot _[y] intrinsics do not apply to the f vec classes.

Comparison Operators: Corresponding Intrinsics and Classes, Part 2

Operators | Corresponding F64vec2 | F32vec4 | F32vecl
Intrinsic

cnpeq _mm cnpeq_|[X] pd ps ss

cnpneq _mm cnpeq_|[X] pd ps ss
_mm andnot _[y]*

cnpgt _mm cnpgt _[X] pd ps ss

cnpge _mm cnpge_|[X] pd ps ss
_mm andnot _[y]*

cnpl t _mmecnplt_[X] pd ps Ss

crmpl e _mm cnpl e_[X] pd ps Ss
_mm andnot _[y]*

cnpngt _mmcnpngt _[x] |pd ps Ss

cnpnge _mm cnpnge_[x] |pd ps Ss

384

Intel® C++ Intrinsics Reference

Operators | Corresponding F64vec?2 | F32vec4 | F32vecl
Intrinsic
cmpnlt [_mmecnpnlt [x] |pd ps ss
crmpnl e _mmcnpnle [x] |pd ps ss
Conditional Select Operators: Corresponding Intrinsics and Classes, Part 1
Operators Corresponding I32vec4 | I116vec8 | I8vecl6 | 132vec?2 | I116vec4 | 18vec8
Intrinsic
sel ect _eq |_mm cnpeq_][X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
~mm and_[vYy] si 128 |si 128 |si 128 |si64 si 64 si 64
_mm andnot _[y]* |si 128 |sil1l28 |sil1l28 |[si64 si 64 si 64
_mmor _[vy] si 128 |si 128 |si128 |si64 si 64 si 64
sel ect _neq | _mm cnpeq_][X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
—mm and_[vYy] si 128 |si 128 |si 128 |si64 si 64 si 64
“mm andnot _[y]* |si128 |si128 |sil128 |si64 si 64 si 64
“nmmor_[y] si 128 |si 128 |si128 |si64 si 64 si 64
select _gt |_mmcnpgt [X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
mm and[V] si 128 |si 128 |si128 |si64 si 64 si 64
“mm andnot _[y]* |si128 |si128 |sil1l28 |si64 si 64 si 64
_mmor _[vy] si 128 |si 128 |si128 |si64 si 64 si 64
sel ect_ge |_mm cnpge_ [X] epi 32 |epil6 |[epi8 pi 32 pi 16 pi 8
mm and[vVy] si 128 |si 128 |si128 |si64 si 64 si 64
_mm andnot _[y]* |si 128 |sil1l28 |[sil28 |[sib64 si 64 si 64
mm or _[vy] si 128 |si 128 |si 128 |si64 si 64 si 64
select It | _mmecenplt [X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
“mmand_[y si 128 |si 128 |si128 |si64 si 64 si 64
_nm andnot _[y]* |si128 |si128 |si128 |si64 si 64 si 64
_mmor _[vy] si 128 |si 128 |si 128 |si64 si 64 si 64
select le | _mmecnple [X] epi 32 |epil6 |[epi8 pi 32 pi 16 pi 8
~mmand_ [y si 128 |si 128 |si 128 |si64 si 64 si 64
_mm andnot _[y]* |si 128 |sil1l28 |sil1l28 |[si64 si 64 si 64
_mmor _[vy] si 128 |si 128 |si 128 |si64 si 64 si 64
sel ect _ngt | _mm cnpgt _[X] N/A N/A N/A N/A N/A N/A
sel ect _nge | _nm cnpge_[X] N/A N/A N/A N/A N/A N/A
select _nlt | _mmecnplt [X] N/A N/A N/A N/A N/A N/A
select_nle |_nmmcnpl e_[x] N/A N/A N/A N/A N/A N/A

* Note that _nm _andnot _[y] intrinsics do not apply to the f vec classes.

385

Conditional Select Operators: Corresponding Intrinsics and Classes, Part 2

Operators Corresponding F64vec2 | F32vec4 | F32vecl
Intrinsic

sel ect _eq |_mm cnpeq_|[X] pd ps ss
mm and[vVy]

_mm andnot _[y]*
mmor[y]

sel ect _neq | _mm cnpeq_|[X] pd ps Ss
1and_[y]
andnot Iyl*

1or_[y]

sel ect _gt

cnpgt _[X] pd ps Ss
]

sel ect _ge cnpge_|[X] pd ps Ss
]

ndnot [y]*
r_[yl

ssss 5533 333

oCoLQ®

select It pd ps Ss

(2]
2
=
x,

_Lyl
1 andnot _[y] *
1or_[vy]

Q
>
Q.

533 535]5

select _le 1cnpl e [X] pd ps Ss
and_[v]
mm andnot _[y] *

mm or _[y]

sel ect _ngt | _mmcnpgt [X] pd ps Ss

sel ect _nge | _mm cnpge_|[X] pd ps Ss

select_nlt | _mmecnplt_[X] pd ps Ss

select_nle | _mmcnpl e_[X] pd ps Ss

386

Intel® C++ Intrinsics Reference

Packing and Unpacking Operators: Corresponding Intrinsics and Classes,

Part 1

Operators Corresponding I64vec? | I32vec4 | I116vec8 | I8vecl6 | I32vec?2
Intrinsic

unpack_hi gh | _mm unpackhi [x] |epi 64 |epi32 |epil6 |epi8 pi 32
unpack | ow |_mm unpacklo [x] |epi64 |epi32 |epil6 |epi8 pi 32
pack_sat _mm packs_[x] N/A epi 32 |epil6 |[N/A pi 32
packu_sat _mm packus_[x] N/A N/A epi 16 [N/A N/A
sat _add _mm_adds_[x] N/A N/A epi 16 |[epi 8 N/A
sat_sub _mm subs_[x] N/A N/A epi 16 |[epi 8 N/A

Packing and Unpacking Operators: Corresponding Intrinsics and Classes,

Part 2

Operators Cor_res_ponding I16vec4 | I8vec8 | F64vec2 | F32vec4 | F32vecl
Intrinsic

unpack_hi gh | _mm unpackhi [x] |pi 16 pi 8 pd ps N/A
unpack | ow | _mm unpackl o_[x] |pi 16 pi 8 pd ps N/A
pack_sat _mm packs_[x] pi 16 N/A N/A N/A N/A
packu_sat _mm packus_[x] pulé6 N/A N/A N/A N/A

sat _add _mm adds_[x] pi 16 pi 8 pd ps Ss
sat_sub _mm subs_[x] pi 16 pi 8 pi 16 pi 8 pd

387

Conversions Operators: Corresponding Intrinsics and Classes

Operators Corresponding
Intrinsic
F64vec2Tol nt _mmcvttsd_si 32

F32vec4ToF64vec2 | _nmm cvtps_pd

F64vec2ToF32vec4 | _mm cvt pd_ps

| nt ToF64vec?2 _mm cvtsi 32_sd

F32vec4Tol nt _mmecvtt_ss2si

F32vec4Tol s32vec2 | _mm cvttps_pi 32

I nt ToF32vec4 _mm cvtsi32_ss

| s32vec2ToF32vec4 | _nmm cvt pi 32_ps

388

Intel® C++ Intrinsics Reference

Programming Example

This sample program uses the F32vec4 class to average the elements of a 20 element floating
point array.

/1

/1
/1
/1

1/

/
/1
/1
/

Vo

Vo

#i ncl ude <fvec. h>

#defi ne SHUFFLE(a, b,i) (F32vec4) mm shuffle _ps(a,b,i)
#i ncl ude <stdio. h>
#define SIZE 20

float result;
_MM ALIGN 16 float array[Sl ZE];

/***

/***

4 floats

I nclude Stream ng SIMD Extension C ass Definitions

Shuffle any 2 single precision floating point froma
into low 2 SP FP and shuffle any 2 SP FP fromb
into high 2 SP FP of destination

d obal vari abl es

Function: Add20ArrayEl enents
Add all the elements of a 20 el enment array

d Add20ArrayEl enents (F32vec4 *array, float *result)

F32vec4 vecO, vecl,
vecO = _mmload_ps ((float *) array); // Load array's first

//***

/1 Add all elements of the array, 4 elenents at a tine

//**

vecO += array[1l]; // Add elenments 5-8

vecO += array[2]; // Add elements 9-12
vecO += array[3]; // Add elements 13-16
vecO += array[4]; // Add elements 17-20

khkhkkhkhkkhhkhkhhkhkhhkhkhhhkhhhkhhhhhkhhhhhhdhhhkhdhhhhkhhhkrkhkrkk **x*

/1
/1 There are now 4 partial suns.

// Add the 2 lowers to the 2 raises,
/1

/1

then add those 2 results together
khkkkhhkkhkhhkhkkhhhkhhhkhkhhhkhkhhhkdhhhdhdxkddhhkdhdxddhxrdhx*dx***x*%x

vecl = SHUFFLE(vecl, vecO, 0x40);

vecO += vecl;

vecl = SHUFFLE(vecl, vecO, 0x30);

vecO += vecl;

vecO = SHUFFLE(vecO, vecO, 2);

_mmstore_ss (result, vecO); // Store the final sum

d main(int argc, char *argv[])
int i;

/1 Initialize the array

for (i=0; i < SIZE; i++)

array[i] = (float) i;

/1 Call function to add all array el enents

389

Add20Ar rayEl enents (array, &result);

/1 Print average array el enment val ue
printf ("Average of all
printf

("The correct answer is %\n\n\n",

array values = %\n",

result/20.);
9.5);

390

Intel® C++ Intrinsics Reference

| ndex

HASSCTT ..ottt 44
HACINE .o 44
#pragma distribute point............cceeevrerveenneen. 155
#pragma hdrstopoeoveeeerienieniinicece 55
#pragma ivdepoeevvverieeniienieens 117,125, 157
#pragma 1oop CoUNt.........occvveverververieniieeenns 155
#pragma noprefetch..........occoeevreiiiinienienn, 156
HPragma NOSWP...ceeuveereeeriieeieeenireeieeeneeenneens 154
#pragma nounrollccoccevieiiiiiiiinienies 156
HPragma NOVECTOTeeeuveerereerieeriieeieeans 125, 157
HPragma OmMpP.......eeeeveeerveerreensreennns 137, 140, 147
HPragma OPtimMIZecccveeveveeereeriieeieesieeeneenns 80
#pragma prefetch........ccevvveeiiiinieciieiee, 156
HPIAGMA SWP..eeeuveeerreeiieeireenereesreenereesseennnens 154
Hpragma taskq......coeeveereveercveeeseeerireenneens 150, 153
#pragma unrollccceeveiveevieinieeie e, 156
HPragma VECLOTcccuveeruveenireenieenireenieenns 125, 157
Hundef ..o 44
-[no]align Option........ccceceervereieriierieeieeie e 11
-[NO]restrict OPtiON.......eecveeeeeeeieiieieeieeie e 11
__GNUC _ predefined macro...........ccoccveneee.e. 71
_ GNUC _MINOR predefined macro........... 71
_ GNUC PATCHLEVEL predefined macro
.. 71
_ STDC MACTO.ccueeeeienieeiieiieniiesiee e 76
_ TIME mMacrocccceevveevieeienieie e 76
“A- OPHION i 11
acos library function.........ccceeeveevveenvienveennen. 176
acosd library function........c.cceceeeeveecciencnnnn 176
acosh library function........c..ceceeeveeeccienennenn 179
-alias_args[-] OPtioN.......ccoecverieriierieeieeieeeeene. 11
1 [ea s o) 075 (o) s KOS 60
Y 1T 1100153 1| 54
alternate tools and pathscccoeeveeevieiieennnnns 53
-Aname[(value)] option.......ccceecveereeecrreeneennne. 11

annuity library functionccceeeeevvveenennns 184
V) 0701510) | USSR 11,76
ANSI/ISO standard.........cccoveevieninncnncnennn. 76
-ansi_alias[-] option.......ccccecveerveerveenneennee. 11,76
AITAYS +eeevveerereenreenreensreesseessseesseesseesssesssseeses 125
asin library function..........ccecceeevevienveneenene, 176
asind library function...........coccevevereecicncnenn 176
asinh library function..........coccevevereeceencnnnn 179
atan library function..........c.ccoceeenenercienenncnn. 176
atan2 library function..........ccceveveveeccnennnn 176
atand library function..........c.cceeveevieevveenneens 176
atand?2 library function..........cc.cceeveevvvennnnne 176
atanh library function..........cccoeeeeeeveercveennennns 179
-auto ilp32 option.......ccceeecvveeciieeniieeiie e, 11
~AX OPLION..eeieeieeiieeireeieeeee e eeee e 11, 86,119
bash profileccoceviiiiiiiiniiee, 40
built-in functions.........ccccoceverererceciencncncnnne 74
“C OPHION ...ttt 11
C _INCLUDE PATH enviroment variable...... 48
=CO9[-] OPLION ...t 11
cabs library function..........cccceeevevverveneennnne. 193
cacos library functionccecceeevrveniennnne. 193
cacosh library functionccceeevvevvvennens 193
CAPLUTEPTIVALE ...eevvvieereeereeereeereerireesireeneneenes 150
carg library functionccceeevveevieeiieeenennns 193
casin library function..........cccoeeveecieeicieeeneens 193
casinh library function..........ccccceeeeveerciiennenne 193
catan library function..........cccoeeveeevieenieenienns 193
catanh library function.........c..coceeceeecicnennenn 193
cbrt library function.........ccecceeevevvereeneennne, 180
ccos library function...........ccceeevevvevveneennnne, 193
ccosh library functionccoccevvevvenvennnne. 193
ceil library functionccccocevevvceiencncnnnn 187
cexp library function.........ccceeeevveevveeiveennnenne 193
cexpl0 library function.........cccceeveveerveennennns 193

391

cimag library functionccccoeeevenenienncens 193
cis library function..........cccceeeeveevieenieenveennn. 193
class libraries

floating-point vector classes....... 363, 364, 365,
366, 370, 371, 372, 376, 379, 380, 381, 389

integer vector classes.340, 341, 344, 346, 348,
349, 351, 352, 354, 356, 360, 361, 362

class libraries...........ccccveeeennee... 332, 333,334,338
clog library functionccoecvevvevveniieirennnne 193
clog2 library functionccccceeecvveecreeineennnen. 193
code-coverage tool.......ccevvveerieenieenieenieeeenn 103
compiling
and linkKing........occeevvieiieenieenieeeeecieeeieee 60
CONLTOIIING .oovevvieiieeie e 51
from the command line............ccccceeceinnnne. 40
Phases Ofoovveiieiieieeeeeee e 39
with alternate tools and paths 53
With make ..o 42
COMPIIING...eviiiieiieiieie e 51
-complex_limited range option............cce......... 11
compound library functioncccceceenuennene. 184
configuration files........ccccoovvveviiviieecieiiieeieens 49
conj library functioncccecceeevveeeveenveennnn. 193
conventions
for class libraries.........ccceveeerieeeieiccienicnnenn 4
for document............oceevveienininininiceen 4
Or INIINSICS.c.cvenveiirieiccreeceeece e 4
copysign library function...........cccecceeevveernnene 190
cos library function..........cccceeveveeeeecieecieniennnns 176
cosd library function...........cceceeeeveeieeiennennnnns 176
cosh library function...........ccecceeeieiieieninnnnnns 179
cot library functionc.cceceeereveeniccicncnnenn 176
cotd library functioncccceeevveeereenveennnen. 176
CPATH enviroment variable..........c..ccceceeuneene. 48
CPLUS_INCLUDE PATH enviroment variable
.. 48
cpow library functioncccceevveerveerveennnen. 193
cproj library function..........cccceevvveevienveennnen. 193

392

CpU diSPatCh..c.eeeeiieeieeeeee e 87
creal library functioncceeevveeiivencieeniens 193
-create_ pch optionceceeeeveenienicenieennen. 11,55
csin library function.........cceceevevveneeneenenne. 193
csinh library function..........coccevevereecvcncnnnn 193
csqrt library functioncceeevevierveneennnne, 193
ctan library function............ccoccevenerercienennenn. 193
ctanh library function..........ccceceverveevicncnnnn. 193
-cxX1lib-gce Option......ccvevvveeveiieieiieieenene 11,71
-CXX11D-1CC OPLION..ccvevrieiieeiieeiieeiee e 11,71
data alignmentcceeevveeiiieniiieeiee e 129
data dependence...........cccueeeveerrieniieenieenieenns 121
default

compiler behavior..........cccoeeeeviienciienreenen. 39

compiler OPtioNnScceevevveevieeerieeerieeeieeennen. 37
denormal results........coeevevierienieiieeeie e 54
=AM OPLION ... 11
-Dname[=value] option...........cceeeeervervenrennnnns 11
~dryrun Option........ccceeveereeeeieeiesie e 11
-dynamic-linker Optioncccoeeeveeereieniennnnns 11
“E Optionoccoeeiieieeee e 11
ECCCFG enviroment variable..........c..ccceeee. 48
ECPCCFG enviroment variable 48
EMMS Instructionccceeevevieneeneeneennene 210
environment

CUSTOMING ..vvveeveeiieeeeieeiieeereeeveeeeeesereenenees 48

setting with iccvars.sh.........coccooveiiiiennnen. 40

Variables.......oovveeiierie e 48
“EP Option....cccvcviniininicicccceece 11
erf library function...........ccecevevevierveneennnne, 184
erfc library function.........cccccocevencreecicnennenn 184
exp library functionc.cceceeceevencnincnenne. 180
exp10 library functioncccceevveenveennens 180
exp2 library functionccceeevvevvieercieencnnens 180
expml library functionc.cceeeveevveennene 180
“F optionooovieii 11
-fno]verbose-asm option.........ccccceeeevveereveennnen. 11

Intel® C++ Intrinsics Reference

fabs library functionccecceeveveeeiiennennnnnn. 190
-falias OPtiON....ccveeeiierieeciiecreee e 11
O ;13 07 0] 5 o) s DO 11
-fcode-asm Option.........cceevereveriieniieiieieeieeee, 11
fdim library function............ccceeevevvervenrennne. 190
features
and benefits........coccevveievinenininncccce 2
TIEW eetenieenieenieenteete e see et e st et et eaneeanesanenaees 1
-ffnalias optioncccceeceveieeienieieieee e, 11
files
CONFIGUIALION ...oovvieiieeiiecieecieeeie e 49
for compiler iNPut........cceevvverieenieenieeeieene 42
for precompiled headerscccceeveveeennennne 55
nclude ...oo.oovieniiiii 50
TESPONISE ..vvveeereeerieereenireeaseeenreesseessseessseenns 50
finite library function...........coceevevereecicniennenn 190
FIrStPIIVALE .eveeveeeeeeeeeeeeee e 150
floor library functioncccoeevevvevveneennnne, 187
flushing denormal resultscccceceeeeenicnennene 54
fma library function.........ccccoevvenerienicncnnnn 190
fmax library function..........ccoceeveveiicnicnennnn 190
fmin library function..........cc.ccceeevveevvrenvennnnnn. 190
-fminshared option..........cccceeveeeieerieeciieceenee 11
fmod library function..........c.ccceeevveecvrervennnnnn. 189
-fho-alias Optioncceeevvevieeniierieeieeee e 11
-fho-common Option...........ccceeeeveereeerieeenieenne, 11
-fno-fnalias Optioncceceevververieeciieieeieee, 11
-fNO-1ttl OPLION ..c.eveeveieieeeeeeee e, 11
-fosplit[-] Optioncecvvevevverieiieieeieee, 11, 100
“fP OPLION .. 11, 80
-fp_port option.........ccceeveveceieiieieienen. 11, 80, 81
i od (O] 7 o) s H R 11
-fpstkchk option........ccceeeveveeiiieniiieiiieeiens 11, 81
“f132 OPtION...eiiiieeiiecieeiee e 11
frexp library function.........ccecceeeeveevvienvennnnen. 180
-fshort-enums Optionccceeeeveeereeecieeenneennne. 11
-fsource-asm option........cccceeeeeevveereeecieeesieeenne 11

-fsyntax-only optionccceeeceeevveenveenveennnen. 11
-ftZ[-] OPtON c.evveeiieciie e, 11,83
function splitting........cccccveeveerciieniieeniieneenne, 100
-funsigned-bitfields option..........c.ccevvereennns 11
-funsigned-char option............cccoceeveverieniennenns 11
-fvisibility OPtiON ...ecvveeeeieeieieieee e 11
-fvisibility-default= optioncccccerenennene 11
-fvisibility-extern= option..........c..coceeverererunene 11
-fvisibility-hidden= option........c..ccccccueevenuennenn. 11
-fvisibility-internal= optionccccceeueenne. 11
-fvisibility-protected= option..........c.ccceeuvennen. 11
0] 01510 s FO OO 11
gamma library functioncccceeeveeevrennnne 184
gamma_r library functionc.cceevveeenennne 184
gcc

interoperability Withc.ccocveeriiiiiinininne 71
gee function attributescceecvevveeieecieneenen. 75
~gCC-NAME OPLION ..evvreneeenireeeeeiieeieeeenieeneens 11,71
-gCC-VErsSion= OPtiON.......cccccvererererevrenennnnns 11,71
global symbols........ccceeereeieniinininineiceiene 63
“H option.......c.cceeeieiieieee e 11
-help option.......ccevecieeeiieiecceen 11
hypot library functioncccceeveveerveennene 180
L OPHON ot 11
-1_dynamic Option........ccceevveerveenieenieenveenenenn 11
TA32ROOT enviroment variable...................... 48
IA64ROOT enviroment variable...................... 48
ICCCFG enviroment variable..............c.......... 48
1CCVArS.CSN oo 40
1CCVArS.Sh e 40
ICPCCFG enviroment variable........................ 48
-idirafter option.........ceccecvevenienininiceicieen 11
ilogb library function.........c.cceceevveeniieniieennns 180
include files

searching forc.coecvevvieencieenieerie e, 51
include filescooevvieniinieniiieee 50
inline exXpansion.........ccccceeeevveecveeereensveennnenn 97, 98

393

-inline_debug_info optioncccccevueenenee. 11,92

Intel eXtenSions.......cceeveveerieerieenieenieesieeeenn 148
Intel math library60, 176, 179, 180, 184, 187,
189, 190, 193
intermediate language..........cooceeevvreierieniennne 94
intrinsics
benefits 0f USINGoovevvvereieieieieeee e, 200
for cross-processor implementation...311, 315,
318, 323
for data alignment.............ccoeeeveerneennne 307, 308
for Itanium(R) processor ...285, 288, 291, 292,
296, 300
for new Intel processors.............. 283, 284, 285
MMX(TM) Technology211, 213, 215, 217,
218,220
Streaming SIMD Extensions221, 222, 225,
226,231,233, 234, 235, 236, 239, 243, 244,
246, 248

Streaming SIMD Extensions 2
floating-point. 249, 251, 252, 257, 259, 260,

261,262
integer....263, 268, 269, 272, 274, 275, 277,
280, 281, 282

Streaming SIMD Extensions 2 249
USALE SYNLAX .vvveeereeereenereenreeereeereeenanennes 203

o | J0] 0131021 USRI 11,92, 98
-ip_no_inlining option.........ccccecveveennenn. 11,92, 97
-ip_no_pinlining optionc..ccceeveeuveneennenn 11,97
-IPF_flt eval methodO option.............. 11, 80, 83
-IPF_fltacc[-] option......ccceceevevenuennenn 11, 80, 83
-IPF_fma[-] optioncccvecvrevenennnen. 11, 80, 83
-IPF _fp speculation option.................. 11, 80, 83
-1pO OPtioN ...veeveveeeeiieeeenee 11, 92,94, 95, 97, 98
SIPO_C OPHION.cueiieeiieeiieeiee e e eive e 11,92
-Ip0_0Dbj OPtON ..eeevveeirieiieeieee, 11,92,94, 119
SO S OPHON ..t 11,92
isnan library function..........c.ccceevveeevienveennnen. 190
~ISYSEEM OPHION .eveeeieeiieeiie e 11
-ivdep_parallel option..........cccceceeveeucnnnne. 11,117
jO library function...........ccoevevveveeecieecienienens 184

394

j1 library function..........ccceeeveeeciieeieeiiiieeneens 184
jn library function..........ccceeeveevciieeieeiiieeeneen, 184
“KeH+ Option ..eeeeeeeeieeieeieee e 11
KMP_LIBRARY environment variable......... 143
KMP_STACKSIZE environment variable 143
-Knopic option........cceeeevverieciinciiiieeieeiens 11
“KPIC 0ptioncceeevveviieniieiieieeieeeeee e 11
=L OPLION .. 11
language conformance...........ceceeeveevenencrenneene 76
1aStPIIVALE ..eoovveeevieeiieeie e 150

ldexp library functioncccceevveeriveenneennne. 180
legal information...........ccceeeveeecveeiieeeciienieenneenns 2
lgamma library functioncccceeevveenneenne. 184
lgamma_r library function..........c.cccceveueenee. 184
IbIMELA (e 60
libraries

MANAZING ..ottt 62
JICEMSE ..ot 3
Ilrint library functioncoccecevceeevicnennnn 187
Ilround library function...........ccccocevervenecnenn 187
log library functionccceeevvevveerireennnennne, 180
log10 library functioncccceevveerveencueennns 180
loglp library functionccccceevveenveenieennns 180
log2 library functionccceeeevveviveeriveennnenne. 180
logb library functioncceeevvevveeciveenneenne. 180
-long_double option.........cccceevverererireirenen. 11, 81
loop transformation..........cccceeevenereececniennnn 117
Irint library function..........c.ccoccevenererciencnnenn 187
Iround library function.........c.ccoccecevveieneenenn 187
“M OPLION .. 11
MAKE .ot 42
MaKefile ...ooueeiiiiiiiiiiien 42
-march=cpu option........ccccecvverrrveerrreenneennen. 11,85
math lbraryccoccveevcieeniiieiieeeeecee e 60
matrix multiplicationc.cceevveeerveerveeninnnns 131
“MCPU=CPU OPLION...evrrerreenireeeieeireeireeeveeenes 11

Intel® C++ Intrinsics Reference

“MD OPHON .ot 11
“MF OPtiON....ceoiiieiieeiieciie et 11
MG OPHON .ottt 11
MM OPHON .ot 11
“MMD OPtION ..ot 11
-MNO-relaX OPtIONeevvveereeeieiieiieieeie e 11
-mno-serialize-volatile option............cccceeue.e.. 11
modf library function...........cocceeeveeivrieniennns 187
B 1010 J0) 015 (o) 1 KOS 11, 81
o 10100 BE0) 015011 H SR 11, 80, 81
-mrelax OPtioNeeevveeeeeeriieerie e 11
-mserialize-volatile Option..........cceeeveeevveerieennns 11
“MX OPHON .ttt 11
nearbyint library function...........c.cceceevveennen. 187
nextafter library function..........cccceeeevverveennnen. 190
nexttoward library functionc..ccceeeeuenee 190
-N0_CPPIt OPLION .ot 11
-NODLSS_INit OPLION ...eeeeeeieeeieieeieeie e 11
-nodefaultlibs option..........cccecvevveriveriierirninnen. 11
“N0-CC OPLION....eeeireereirereeereeieeieeee e 11,71
-nolib_inline optioncccecvveveeennnen. 11, 81,92
-nostartfiles option........cecuvevceeeriiercieenieenieenne, 11
-NOStAINC OPLION ..evvvieeieeiieeire e 11
-NOStdlib OPtiON....ccuviiieeiiieieeie e 11
~O OPLION .eeeeeveeiieeie e e 11,95
=00 OPLION...uveeeeireeieeeiieeiie e eieeeire e 11, 80
“O1 OPHON...ceeieeieieeie e 11,79
“O2 OPHON...ceeieeieieeie et 11,79
=03 OPtON. ..ot 11,79
~Ob OPHON. c..eeiieeieeie et 11
OMP_DYNAMIC environment variable 143
OMP_NESTED environment variable............ 143
OMP_NUM_THREADS environment variable
.. 134, 143
OMP_SCHEDULE environment variable.....134,
143
~OPENMP OPLION..eeeuereeereeereerreenreeeeeeennees 11, 140
OpenMP*

ClaUSES. ...veiee e 141
dITeCtIVES....eiiieeieiiecececee e 141
OpenMP*....... 137, 140, 141, 142, 143, 144, 147,
148, 153
-openmp_1eport OPtioncceevveeveeennnne 11, 140
-openmp_Stubs Option.........cceevveereveerecereeennnnns 11
~OPt_TEPOIt OPHOM .euvieeiieieeie e eeee e 11
-opt_report_file option.........cccecveveveerennenne 11, 159
-opt_report_help option..........cccevvevrennnne 11,159
-opt_report_level option.........cceeeevveeneenne 11, 159
-opt_report phase option..........cccceeeeeeueenne 11, 159
-opt_report_routing option..............eceueenne 11, 159
optimization
for floating-point precision..................... 81, 83
for Intel Processorscceevvveeeuveeveennnen. 85, 86
high-level language........c..cccecvevecncnincnncne 117
interprocedural...................... 92,94,95,97,98

parallel programming. 133, 134, 135, 137, 140,
141, 142, 143, 144, 147, 148, 153

profile-guided99, 100, 101, 102, 103, 109,
114,115, 116

TESLIICTNG .o 80
vectorization 119, 120, 121, 122, 123, 124,
125,129, 131

OPHMIZALION ..o eiee et 79
options

Cross referenceccoovvevveviveniieiieeee e, 31

default......ocooevieiee e 37

TIEW .etteiieeenteeeieeette ettt e it e ettt e sate e bt e e sabeenaeees 7

quick referenceccoceeeenienienieeeeen, 11
<P optionoceeeee e 11
-par_report Optionccceeververeennene 11, 134, 135
-par_threshold[n] option................... 11,134,135
-parallel option.........cceevvevrveenvennnne. 11, 120, 134
PATH enviroment variable............ccccceeereenee. 48
“PC32 OPION...veieeeieeireeiee e 11
“PCOA OPLION....eeeeiieeiieeie et 11
-PC8O OPLION...eeeeeeieeeiieeie et 11

395

-PCh OPLION....eeeiiieieeiieee e 11,55

-pch._dir optioncoceeieviiiiinieeee 11,55
S 0101107 0] 5 o) s DS 81
07200 01 T [) B 101, 102
pow library functionccceevevvervenieenennen. 180
-prec_div Optioncceevereveiieiennennen. 11, 80, 81
precompiled headers
organizing source files for..........cccccevenenne. 55
precompiled headers..........ccceeevveiercierieneennne, 55
predefined macros
_ DATE e 46
ECC ..ot 46
EDG oot 46
_ EDG_VERSION _ ...cccccniniiininiininens 46
CELF 46
NS <15) 1153) 1 USSP 46
gnu liNUX o 46
_ GNUC e 46
__ GNUC_MINOR__ ...ccoviiiiiccienene 46
_ GNUC_PATCHLEVEL__cccceevnnee. 46
_ GXX_ABI_VERSIONccccceetvrerirnne 46
_ HONOR _STD ..covciviiicininciiinccnienieens 46
1386 i 46
1386 o 46
1804 .o 46
1804 o 46
ICC e 46
_ INTEL COMPILERcccecvrineiriinnnns 46
_ANTUM v 46
LUK e 46
HINUX e 46
_ LONG_DOUBLE _SIZE _......ccccccuvueee. 46
IPO4 ..o 46
CLPOA e 46
_ NO_INLINE .o, 46
_ NO MATH_INLINESccccoiniininnns 46
_ NO_STRING INLINEScccccoeirinnns 46

396

_ OPTIMIZE _ ...cooiiiiieeeeeee 46
_ PTRDIFF TYPE .. 46
QMSPP e, 46
_ REGISTER PREFIXcccccocvviininenn 46
_ SIGNED CHARS ..o 46
_ SIZE TYPE .o, 46
_ STDC it 46
_ STDC HOSTED .ot 46
CTIME e 46
UIEX -ttt e 46
L UUNEX e 46
_ USER LABEL PREFIX ... 46
~ VERSION .o 46
~ WCHAR TYPE . 46
_ WINT TYPE e 46
_INTEGRAL MAX BITSccceoiviiienn 46
LPO4 .o 46
_PGO_INSTRUMENT......c.cocereriereinnnn 46
1380 e 46
1804 .. 46
LINUX e 46
UK ettt 46
preprocessor
18] 0131028 TSRS 43
PROF_DIR environment variable 101
-prof dir OPtioNncceeeveveervieniieeiieeiieeae 11, 101
PROF DUMP INTERVAL environment
Variablecoeeeeieiee s 116
-prof file option........ccceecvevverieninencnicicniene 11
-prof format 32 optionccccceevereeieeennn 11
-prof gen[x] option...........ceue..e. 11, 99, 100, 101
PROF_NO_CLOBBER environment variable
... 101
-prof use OptioNn........ceeeeveereeecureeninenns 11,99, 100
profile information.......................... 114,115,116
PrOTMETEE ..o 102
-Qinstall OpPtioN......cccveeeeeerieerieeiecie e 11
-Qlocation OPtioN.......ceccveerveerieerieenieeeeeeenenn 11

Intel® C++ Intrinsics Reference

-QOoption OPtioNceeeveveeereeeieeeireenennn 11,92, 98
-Qoption SPECIfierscceevvrerveerieerieeiie e 92
=P OPLION ettt 11
-ICA OPLION ..t 11, 81
remainder library function..............ccoecuveeeenen. 189
remquo library function............ccccceevevvrenennen. 189
requirements

hardwarecoceeeeeeiieneninececee 3

SOTEWATE ...evviieieciccecce e 3
1eSPONSE fIlES ..vovvieiiieciieciieeieeceeeee e 50
TESIIICt OPLION .eveeneiieiieciie e e 76
rint library function..........ccceeveeeevieenieenieenen. 187
round library function..........ccceeeveevveenveennnen. 187
=S OPLON ..o 11
scalb library function.........ccccceevveervienveennnnn. 180
scalbln library function.........c.ccocceceeveciencnnenn 180
scalbn library function..........c.ccecevereeciencnnnn 180
shared [ibrariesc..ceceeeeverenieneneneenicniennens 62
-shared Optioncceeevveeirierieieeeeee e, 11
-shared-libcxa option.........ccceceevvevverieeriennenee. 11
sin library functionccccecevevenceecnencnnenn 176
sincos library function..........cccceecvevevierveennnen. 176
sincosd library function...........cccceeeevveernveennenn. 176
sind library functionccecceeevveeciveenvennnnn. 176
sinh library functionccecceevveecveenvennnnnn. 179
sinhcosh library functionccccecvveeuveenneen. 179
software pipelining.........cccceevvveeeeriereeneennnne 154
=SOX[-] OPLION ..ot 11
sqrt library function..........ccccceevencricicncnnenn 180
=StAtIC OPHIOM c.eviteiieieciieeeie e 11
-static-1ibcxXa Option.......c.eecveeeerverieriieieeieeee, 11
-Std=C99 OPLION.....ccevrreeiireieieiieeeieee e 11
-Strict ansi OPtioNcceeeeveerveeeveerveenneenns 11,76
SEIP MINING..eeeevvieiieeiiieeieeeiee e erve e 124
structure tag alignments...........cccceevveerereenneennne. 54
01 0) 010) 4 USSR 2
Symbol preemption.........ccceeceeeeveeerieeecieeenneennnes 64

~SYNEAX OPLION .eeevereeiiieiieeiieere e eireeeae e 11
ST OPHON et 11
tan library functionccecceevevieniieencieenneens 176
tand library functionc.ccocevenerieiicncnnnn 176
tanh library functionc..coceeenerieiicncnnnn 179
test-prioritization toolcocceeveeeecieniennenn 109
tgamma library functionc..cocceceecvenenenn 184
threshold control...........coccoeveviencninincnenn. 135
timing applicationeccveeveeeverceerceereeseenne 160
TMP enviroment variable..........ccccceeervennennee. 48
PP OPHION e 11
PP OPLION ettt 11
“IPPS OPHION ettt 11
“PPO OPLION .ttt 11
“EPPT OPHION .ottt 11
trunc library function..........ccceceveevievcnennnn 187
SU OPHOM. 1ttt et e e seeeeeens 11
“U OPLION. ..t 11
~unroll[n] optionccccceevierierieieieee e 11
~unroll0 Optionecveeeerieieiec e 11
unwinder [ibraryc.ccocveeeeeeeevienenencneneene. 60
~USE_ASIM OPLION..eeeeeviieiieeireeiieeire e eee e 11
-US€_MSASM OPLION ..veeenvvreireeiieeireeiie e 11
-use_Pch optioncceeveveeecieevcieeeciieiieeene. 11,55
0] 01510 s FO USRS 11
variables

CNVITONMENEeveeeieeieiieiieiieeeeie e eees 48

setting environmentc.cceeevereeeeeernenen. 40
-vec_report[n] Option........cccceevevereeererennnne 11, 119

vectorizer 119, 120, 121, 122, 123, 124, 125, 129

“W OPHIOMN. ..ttt 11
“Wall OPHON......evvieierieeiieieicerceeeeeeeee e 11
-Wbrief Optionccceeevveerieenieerieeie e, 11
-Wcheck optionccceecevevvieniiienieeniieeieeee, 11
“WA OPLION..eeeeiiieiieeiieeie e 11
SWE OPHIOM .eeeeiiieeiieeiieeire e eireesive e e saeenanees 11
~WEITOr OPHION ...eveeeiieeiie et 11

397

WL OPtION....eiieiieeiie et e 11

A 110 015 10 s FO SR 11
“WDPO64 OPLION.....oeeieeiiieeieeeieeeiee e 11
“WE OPHIOM 1.ttt eee e eeees 11
LA Ae) 0715 (o) s WP 11
-x option 11,31, 50, 51, 76, 81, 85, 119, 120
B €1 0) 01 (o) s BT RSR 11

398

=X OPHON .eeeeniieeireeive e eire e eire e eere e 11
X e 94, 95,97
-XIinker Optionceeeveereveeneeenieeie e 11
yO0 library functioncccceevevevevevireeennenennns 184
y1 library functioncccceeevvevevecirecieniennnnns 184
yn library functioncccceevevevevrecirecnrennnne 184
4 0] o110 o DRSS 11

	Disclaimer and Legal Information
	Table of Contents
	Welcome to the Intel® C++ Compiler
	What's New in This Release
	Features and Benefits
	Product Web Site and Support
	System Requirements
	FLEXlm* Electronic Licensing
	Related Publications
	How to Use This Document

	Compiler Options Quick Reference
	New Options
	Options Quick Reference Guide
	Compiler Options Cross Reference
	Default Compiler Options

	Building and Debugging Applications
	Getting Started
	Building Applications from the Command Line
	Compilation Options
	Linking
	Debugging

	Using Libraries
	Default Libraries
	Intel® Shared Libraries
	Managing Libraries
	Compiling for Non-shared Libraries

	gcc* Compatibility
	gcc* Interoperability
	gcc Built-in Functions
	gcc Function Attributes

	Language Conformance
	Conformance Options
	Conformance to the C Standard
	Conformance to the C++ Standard

	Compiler Optimizations
	Optimization Levels
	Floating-point Optimizations
	Optimizing for Specific Processors
	Interprocedural Optimizations
	Multifile IPO
	Inline Expansion of Functions
	Profile-guided Optimizations
	High-level Language Optimizations (HLO)

	Parallel Programming
	Vectorization (IA-32 only)
	Auto Parallelization
	Parallelization with OpenMP*
	Intel Extensions to OpenMP

	Optimization Support Features
	Compiler Directives
	Optimizer Report Generation
	Timing Your Application

	Compiler Limits
	Key Files
	Key Files Summary for IA-32 Compiler
	Key Files Summary for Itanium® Compiler

	Diagnostics and Messages
	Diagnostic Messages

	Intel Math Library
	Intel® C++ Intrinsics Reference
	Introduction
	Intrinsics Implementation Across All IA
	MMX™ Technology Intrinsics
	Streaming SIMD Extensions
	Streaming SIMD Extensions 2
	New IA-32 Intrinsics
	Intrinsics for Itanium® Instructions
	Data Alignment, Memory Allocation Intrinsics, and Inline Assembly
	Intrinsics Cross-processor Implementation

	Intel® C++ Class Libraries
	Introduction to the Class Libraries
	Integer Vector Classes
	Floating-point Vector Classes
	Classes Quick Reference
	Programming Example

	Index

